Tissue-Light Interaction During Monitoring of Thermal Lesion Using Quantum Dot Mediated Fluorescence Thermometry

Author(s):  
Willard Hanson ◽  
Najma Abdollahzadeh ◽  
Bumsoo Han

Thermal therapy, destroying tumor in situ by localized heating, is emerging as one of the treatment options for benign and localized tumors. Despite many advantages of thermal therapy, its clinical application is still limited due to the lack of a reliable intraoperative monitoring technique of the thermal lesion. To address this challenge, an intraoperative thermometry technique has been proposed using the temperature-dependent fluorescence of quantum dots (QDs). Its feasibility is recently demonstrated by monitoring the spatiotemporal temperature during gold nanoshell-mediated heating. In the present study, the effects of tissue-light interaction on the QD-mediated thermometry were investigated both experimentally and theoretically so that the technique can be extended to in vivo applications. As for experimental investigation, the QD fluorescence through tissue phantom was characterized with varying the thickness of the phantom over a temperature range relevant to thermal therapy. The results showed that the QD fluorescence through tissue phantom was still linearly correlated to the local temperature, but the slope of the correlations decreased with the phantom thickness. As for theoretical investigation, the radiative transfer equation was reduced to the diffusion approximation, and the QD fluorescence through tissue phantom was predicted by numerically solving the diffusion approximation. The results confirmed that the diffusion approximation could describe the tissue-light interaction for the QD-mediated thermometry but further research is still required to improve the accuracy of the prediction.

Author(s):  
Bumsoo Han ◽  
Willard L. Hanson ◽  
Karim Bensalah ◽  
Altug Tuncel ◽  
Joshua Stern ◽  
...  

Due to advances and routine use of various diagnostic technologies, tumors are increasingly detected at very early stages. Thus, there is growing interest in employing minimally invasive surgical techniques for the management of tumors. Many of these procedures are thermal therapies, in which localized thermal lesions, either hyperthermic or cryogenic, are created to destroy malignant tissue in situ. However, the major drawback to the widespread dissemination and acceptance of thermal therapy is the lack of a reliable real-time intraoperative monitoring technique of the thermal lesion.


Author(s):  
Willard Hanson ◽  
Najma Abdollahzadeh ◽  
Yaling Liu ◽  
Bumsoo Han

As cancer diagnostics advance, tumors are increasingly detected at very early stages so that the tumors can be destroyed in situ by localized heating. This can be achieved minimally invasively or completely non-invasively using various energy sources including laser, RF wave, microwave and ultrasound. Despite many advantages of these thermal therapies, the major huddle to the widespread dissemination of thermal therapy is the lack of a reliable intraoperative monitoring technique of the thermal lesion. Currently available monitoring techniques cannot provide reliable real-time information of thermal lesion due to their limited accuracy or accessibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoon Hong Chun ◽  
Sun-Kyoung Park ◽  
Eun Jeong Kim ◽  
Hyun Jong Lee ◽  
Hyewon Kim ◽  
...  

AbstractThe available treatment options include corneal transplantation for significant corneal defects and opacity. However, shortage of donor corneas and safety issues in performing corneal transplantation are the main limitations. Accordingly, we adopted the injectable in situ-forming hydrogels of collagen type I crosslinked via multifunctional polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) for treatment and evaluated in vivo biocompatibility. The New Zealand White rabbits (N = 20) were randomly grouped into the keratectomy-only and keratectomy with PEG-collagen hydrogel-treated groups. Samples were processed for immunohistochemical evaluation. In both clinical and histologic observations, epithelial cells were able to migrate and form multilayers over the PEG-collagen hydrogels at the site of the corneal stromal defect. There was no evidence of inflammatory or immunological reactions or increased IOP for PEG-collagen hydrogel-treated corneas during the four weeks of observation. Immunohistochemistry revealed the presence of α-smooth muscle actin (α-SMA) in the superior corneal stroma of the keratectomy-only group (indicative of fibrotic healing), whereas low stromal α-SMA expression was detected in the keratectomy with PEG-collagen hydrogel-treated group. Taken together, we suggest that PEG-collagen may be used as a safe and effective alternative in treating corneal defect in clinical setting.


2007 ◽  
Vol 293 (6) ◽  
pp. R2323-R2335 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Robert F. Rogers

The aim of the present study was to determine characteristics of fast oscillations in the juvenile rat phrenic nerve (Ph) and to establish their temperature and state dependence. Two different age-matched decerebrate, baro- and chemodenervated rat preparations, in vivo and in situ arterially perfused models, were used to examine three systemic properties: 1) generation and dynamics of fast oscillations in Ph activity (both preparations), 2) responses to anoxia (both preparations), and 3) the effects of temperature on fast oscillations (in situ only). Both juvenile preparations generated power and coherence in two major bands analogous to adult medium- and high-frequency oscillations (HFO) at frequencies that increased with temperature but were lower than in adults. At < 28°C, however, Ph oscillations were confined primarily to one low-frequency band (20–45 Hz). During sustained anoxia, both preparations produced stereotypical state changes from eupnea to hyperpnea to transition bursting (a behavior present only in vivo during incomplete ischemia) to gasping. Thus the juvenile rat produces a sequential pattern of responses to anoxia that are intermediate forms between those produced by neonates and those produced by adults. Time-frequency analysis determined that fast oscillations demonstrated dynamics over the course of the inspiratory burst and a state dependence similar to that of adults in vivo in which hyperpnea (and transition) bursts are associated with increases in HFO, while gasping contains no HFO. Our results confirm that both the fast oscillations in Ph activity and the coherence between Ph pairs produced by the juvenile rat are profoundly state- and temperature-dependent.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2020 ◽  
Author(s):  
Wenhao Zhou ◽  
Teng Zhang ◽  
Jianglong Yan ◽  
QiYao Li ◽  
Panpan Xiong ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2500 ◽  
Author(s):  
Vrathasha Vrathasha ◽  
Hilary Weidner ◽  
Anja Nohe

Background: Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. Methods: Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. Results: Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. Conclusion: CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document