Formation of Electro-Conductive Part on Polymeric Material Surface by CO2 Laser Irradiation

Author(s):  
Takushi Saito ◽  
Tatsuya Kawaguchi ◽  
Isao Satoh

In this study, a method to directly form an electrically conductive layer on the surface of polymeric material by using infrared laser irradiation was investigated. Polyacrylonitrile, which was shaped into a small disk 20 mm in diameter and 5 mm thick, was used as a test specimen. The conditions for pyrolysis were obtained by referencing the conditions for commercial carbon fiber. First, the specimen was processed in air at a relatively low temperature (around 250°C) for the stabilization treatment (i.e., fireproofing), then its surface was heated at a higher temperature (above 1000°C) for the carbonization treatment (i.e., graphitizing). Both an infrared furnace and a carbon dioxide laser were used as heating devices to find optimal conditions. Property changes in the material due to the thermal treatment were measured using Fourier transform infrared spectroscopy, and the electrical conductivity of the carbonized surface was measured using a four-probe method. The results showed that an electrical conductivity of 11.4 S/cm (siemens per centimeter) was achieved with a laser intensity of 8.6 W/cm2 for 5 min for the stabilization, and a laser intensity of 34 W/cm2 for 10 s for the carbonization.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1875
Author(s):  
Alexander Yu. Gerasimenko ◽  
Artem V. Kuksin ◽  
Yury P. Shaman ◽  
Evgeny P. Kitsyuk ◽  
Yulia O. Fedorova ◽  
...  

A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).


2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


2020 ◽  
Vol 38 (5) ◽  
pp. 295-300 ◽  
Author(s):  
Kenneth Luk ◽  
Irene Shuping Zhao ◽  
Ollie Yiru Yu ◽  
May Lei Mei ◽  
Norbert Gutknecht ◽  
...  

2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


2012 ◽  
Vol 182-183 ◽  
pp. 254-258
Author(s):  
Zhong Li Zhao ◽  
Zun Li Mo ◽  
Zhong Yu Chen

Cellulose/Ag/polyaniline conductive composite with rather excellent electrical conductivity was heterogeneously synthesized in this paper. The UV-Vis analysis indicated that homogeneous nanoAg particles deposited on the surface of cellulose in the form of globe particles. They offered some electrons to polyaniline chains. This behavior resulted to the facts that more polyaniline embedded on cellulose and an integrated electrically conductive network formed. Consequently, the high electrical conductivity of the composite was observed. The value was 3.48 S/cm, which was higher two magnitudes than the electrical conductivity of cellulose/polyaniline composite (2.15×10-2S/cm), and even was higher than the electrical conductivity of pure polyaniline (0.142 S/cm). This paper provided a facile method for the preparation of cellulose/Ag/ polyaniline composite with favorable electrical conductivity.


1987 ◽  
Vol 9 (3) ◽  
pp. 265-273 ◽  
Author(s):  
P.O. Byrne ◽  
P.R. Sisson ◽  
P.D. Oliver ◽  
H.R. Ingham

Sign in / Sign up

Export Citation Format

Share Document