Treatment of Meniscal Injuries in the Knee

Author(s):  
Kevin Kaplan

Once thought to be a functionless, vestigial structure, the meniscus is known to be an important load bearing and shock-absorbing structure in the knee. The lateral meniscus absorbs 70% of the load in the lateral compartment and the medial meniscus absorbs 50% of the load in the medial compartment. In addition, it has a secondary role in stabilization of the knee in conjunction with the major ligamentous restraints. Vascular supply to the meniscus is provided by branches from the geniculate arteries that penetrate into approximately 10–30% of its periphery through permeniscal capillary channels (Figure I). The remainder of the meniscus obtains nutrition through diffusion or mechanical pumping.

2021 ◽  
Author(s):  
Yaxiaer Sulaiman ◽  
Qi Li ◽  
Jian Li ◽  
Gang Chen ◽  
Xin Tang

Abstract Purpose: To investigate the effect of discoid lateral meniscus (DLM) on cartilage damage of the medial and lateral compartments of the knee in middle-aged patients.Methods: We analyzed data from 44 patients (54 knees) with symptomatic discoid lateral meniscus (DLM group) and 30 patients (30 knees) with a non-discoid lateral meniscus tear (control group). All patients were over 40 years old. We compared the tibiofemoral angle (TFA) and cartilage injury rate between the two groups. We further classified DLM group patients based on dysmorphic features of the menisci (DLM type), presence/absence of meniscal tear, and symptom durations, then analyzed whether these parameters could affect the number of cartilage injuries in the knee medial and lateral compartments.Results: DLM group showed higher TFA values (2.18°±2.86°) than control group (0.84°±1.35°, P=0.002), and a higher occurrence of medial compartment cartilage damage (P=0.003). Within the DLM group, patients with cartilage damage showed higher BMI than those without cartilage damage (P=0.009 for medial compartment and P=0.001 for lateral, respectively). We found that having symptoms for more than 6 months was associated with cartilage damage in the lateral compartment (P=0.021), but not the medial compartment (P=0.858). Neither presence/absence of a meniscal tear, nor DLM type affected cartilage injury rate in either the medial or lateral compartment (P>0.05).Conclusion: Varus inclination caused by DLM could lead to cartilage injury in the medial compartment in middle-aged patients, but may not reduce the occurrence of chondral damage in the lateral compartment. Rather, lateral compartment chondral damage in patients with DLM was mainly related to symptom duration.


2017 ◽  
Vol 51 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Mustafa Resorlu ◽  
Davut Doner ◽  
Ozan Karatag ◽  
Canan Akgun Toprak

Abstract Background This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Patients and methods Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed all patients in terms of osteoarthritis, chondromalacia patella and medial meniscal tear. The second radiologist was blinded to these results and assessed the presence of bursitis in all patients. Results Mild osteoarthritis (grade I and II) was determined in 55 patients and severe osteoarthritis (grade III and IV) in 45 cases. At retropatellar cartilage evaluation, 25 patients were assessed as normal, while 29 patients were diagnosed with mild chondromalacia patella (grade I and II) and 46 with severe chondromalacia patella (grade III and IV). Medial meniscus tear was determined in 51 patients. Severe osteoarthritis and chondromalacia patella were positively correlated with meniscal tear (p < 0.001 and p = 0.018, respectively). Significant correlation was observed between medial meniscal tear and bursitis in the medial compartment (p = 0.038). Presence of medial periarticular bursitis was positively correlated with severity of osteoarthritis but exhibited no correlation with chondromalacia patella (p = 0.023 and p = 0.479, respectively). Evaluation of lateral compartment bursae revealed lateral collateral ligament bursitis in 2 patients and iliotibial bursitis in 5 patients. Conclusions We observed a greater prevalence of bursitis in the medial compartment of the knee in patients with severe osteoarthritis and medial meniscus tear.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0005
Author(s):  
Brian Vuong ◽  
Nicole Segovia ◽  
Sahej Randhawa ◽  
Sunny Trivedi ◽  
Emily Tran ◽  
...  

Background: The menisci of the knee play a critical role in maintaining structural integrity, as well as in load bearing and shock absorption. In adolescent patients, meniscal tear is a very common sports injury, and is frequently associated with concomitant traumatic injuries including tibial eminence fracture or ACL tear. The incidence of pediatric meniscal tears is increasing, and anatomic studies to guide repair, saucerization and transplantation do not exist. Hypothesis/Purpose: This study’s purpose was to evaluate meniscus dimensions in the developing meniscus and provide anatomic parameters for repair, saucerization, resection, transplantation. Methods: From images of 29 dissected cadaveric knee specimens between 1 month and 132 months of age obtained on a copy stand (14 left knee, 15 right knee), we made direct length measurements from the inner to outer meniscus rim at 45 degree intervals (12, 1:30/10:30, 3:00/9:00, 4:30/7:30 o’clock, 6 o’clock) using Autodesk Fusion 360 software (Figure 1.1). We also measured width between the outer medial and lateral meniscus rims, as well as CT measurements of coronal and sagittal width of the tibial plateau using OsiriX DICOM software. Generalized linear models were used to evaluate the associations of meniscal length measurements with age, tibial width, and meniscal width measurements. All statistical analyses were completed with a two-sided level of significance of 0.05. Results: All radial length measurements were predicted to increase significantly with age (p < 0.01), as coronal tibial width increases (p < 0.05), and as lateral-medial meniscal width increases (p < 0.001) (Figure 1.2). Other than the lateral 3 o’clock measurement (p = 0.119), all radial measurements were predicted to increase significantly as sagittal tibial width increases (p < 0.05). The posterior zones of the medial meniscus (6:00, 4:30/7:30) were found to increase in radial length at a faster rate than the anterior zones. The anterior zones of the medial meniscus (12:00, 1:30/10:30) had the slowest rate of growth. Discussion/Conclusion: Meniscus radial length is related to age, tibial plateau width, and lateral-medial meniscus width. Radial dimensions from normal lateral menisci may allow the surgeon to obtain ideal size of resection, saucerization of discoid menisci. The growth of medial meniscus posterior zones is greater than the anterior zones. This may be attributed to increased posterior region load bearing which increases with ambulation in the developing child. Improved anatomic understanding may help surgeons plan for discoid resection/saucerization/repair, and also support appropriate selection of meniscus allograft for transplantation. [Figure: see text][Figure: see text]


2019 ◽  
Vol 36 (02) ◽  
pp. 072-084 ◽  
Author(s):  
Mohamed M.A. Abumandour ◽  
Naglaa Fathi Bassuoni ◽  
Samir El-Gendy ◽  
Ashraf Karkoura ◽  
Raafat El-Bakary

AbstractThe present work aims to provide more anatomical information on the stifle joint of the investigated species using computed tomography with gross anatomical cross-sections. The current work analyzed the stifle joint of the pelvic limbs of 12 adult donkeys, goats and dogs of both genders. The medial condyle of the femur was larger than the lateral one in the donkey, while it was smaller and lower than the lateral one in the goat and in the dog. The unsuitable femoral and tibial condyles were adapted by the presence of menisci. In the donkey, the medial meniscus was crescentic in shape, but it was semicircular in the goat, while in the dog, the medial and lateral menisci were C-shaped. In the donkey, the medial meniscus was larger than the lateral one, but in the goat and in the dog, the lateral meniscus was the largest, and more concave and thicker. The lateral meniscus was semicircular in the donkey, but it was shaped like an elongated kidney in the goat. In the goat and in the dog, the central border of two menisci was thin, concave and notched centrally. The meniscal ligaments included cranial and caudal ligaments of the medial and lateral menisci, and meniscofemoral ligament of the lateral meniscus. In the dog, the cranial ligament of the medial meniscus was absent, and the medial meniscus had no bony attachment to the tibia but it attached to the transverse intermeniscal ligament, which connected the cranial horn of the medial meniscus with the cranial ligament of the lateral meniscus. The meniscofemoral ligament connected the caudal pole of the lateral meniscus with the intercondyloid fossa of the femur.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0010
Author(s):  
Brett Heldt ◽  
Elsayed Attia ◽  
Raymond Guo ◽  
Indranil Kushare ◽  
Theodore Shybut

Background: Acute anterior cruciate ligament(ACL) rupture is associated with a significant incidence of concomitant meniscal and chondral injuries. However, to our knowledge, the incidence of these concomitant injuries in skeletally immature(SI) versus skeletally mature(SM) patients has not been directly compared. SI patients are a unique subset of ACL patients because surgical considerations are different, and subsequent re-tear rates are high. However, it is unclear if the rates and types of meniscal and chondral injuries differ. Purpose: The purpose of this study is to compare associated meniscal and chondral injury patterns between SI and SM patients under age 21, treated with ACL reconstruction for an acute ACL tear. We hypothesized that no significant differences would be seen. Methods: We performed a single-center retrospective review of primary ACL reconstructions performed from January 2012 to April 2020. Patients were stratified by skeletal maturity status based on a review of records and imaging. Demographic data was recorded, including age, sex, and BMI. Associated intra-articular meniscal injury, including laterality, location, configuration, and treatment were determined. Articular cartilage injury location, grade, and treatments were determined. Revision rates, non-ACL reoperation rates, and time to surgery were also compared between the two groups. Results: 785 SM and 208 SI patients met inclusion criteria. Mean BMI and mean age were significantly different between groups. Meniscal tear rates were significantly greater in SM versus SI patients in medial meniscus tears(P<.001), medial posterior horn tears(P=.001), medial longitudinal tears configuration(P=.007), lateral Radial configuration(P=.002), and lateral complex tears(P=.011). Medial repairs(P<.001) and lateral partial meniscectomies(P=.004) were more likely in the SM group. There was a significantly greater number of chondral injuries in the SM versus SI groups in the Lateral(p=.007) and medial compartments(P<.001). SM patients had a significantly increased number of outerbridge grade 1 and 2 in the Lateral(P<.001) and Medial Compartments(P=.013). ACL revisions(P=.019) and Non-ACL reoperations(P=.002) were significantly greater in the SI patients compared to SM. No other significant differences were noted. Conclusion: SM ACL injured patients have a significantly higher rate of medial meniscus tears and medial longitudinal configurations treated with repair, and a significantly higher rate of radial and/or complex lateral meniscus tears treated with partial meniscectomy compared to the SI group. We also found a significantly higher rate of both medial and lateral compartment chondral injuries, mainly grades 1 and 2, in SM compared to SI patients. Conversely, SI ACL reconstruction patients had higher revision and subsequent non-ACL surgery rates.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaohui Zhang ◽  
Shuo Yuan ◽  
Jun Wang ◽  
Bagen Liao ◽  
De Liang

Abstract Background Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM. Methods A detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated. Results Generally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus. Conclusion Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration.


2021 ◽  
Vol 29 (2) ◽  
pp. 230949902110173
Author(s):  
Hee-June Kim ◽  
Ji-Yeon Shin ◽  
Hyun-Joo Lee ◽  
Chul-Hee Jung ◽  
Kyeong-Hyeon Park ◽  
...  

Background: There are concerns about the progression of the lateral osteoarthritis (OA) should be taken into account when high tibial osteotomy (HTO) is performed in patients with discoid lateral meniscus (LM). This study evaluated the clinical results of HTO in patients with discoid LM and elucidated factors affecting the results. Methods: This study evaluated 32 female patients with varus deformity and medial OA. Patients with discoid LM (8 patients) or without discoid LM (24 patients) underwent open-wedge HTO. The mean age was 53.5 years and the mean follow-up period was 35 months. Clinical results, including the Hospital for Special Surgery (HSS) score, Knee Society knee score (KS) and function score (FS), were evaluated. The progression of OA in the lateral compartment was also evaluated. Finally, we evaluated the factors affecting the clinical results and OA progression in the lateral compartment. Results: Between two groups, all clinical scores were not different (p = 0.964, 0.963, and 0.559, respectively). Three of eight patients (37.5%) in the discoid group developed OA in the lateral compartment, whereas 2 of 24 patients (8.3%) in the control group developed such; however, this was not significantly different (p = 0.085). In discoid group, patients with undercorrection has higher KS relative to patients with acceptable correction (p = 0.044). Other clinical results and OA change in the lateral compartment were not affected by evaluated factors. Conclusions: Patients who underwent open-wedge HTO showed the satisfactory clinical results and lateral OA progression regardless of the presence or absence discoid LM. However, when discoid LM was present, patients with undercorrection showed higher KS in comparison with patients with acceptable correction.


Author(s):  
Young Dong Song ◽  
Shinichiro Nakamura ◽  
Shinichi Kuriyama ◽  
Kohei Nishitani ◽  
Hiromu Ito ◽  
...  

AbstractSeveral concepts may be used to restore normal knee kinematics after total knee arthroplasty. One is a kinematically aligned (KA) technique, which restores the native joint line and limb alignment, and the other is the use of a medial pivot knee (MPK) design, with a ball and socket joint in the medial compartment. This study aimed to compare motions, contact forces, and contact stress between mechanically aligned (MA) and KA (medial tilt 3° [KA3] and 5° [KA5]) models in MPK. An MPK design was virtually implanted with MA, KA3, and KA5 in a validated musculoskeletal computer model of a healthy knee, and the simulation of motion and contact forces was implemented. Anteroposterior (AP) positions, mediolateral positions, external rotation angles of the femoral component relative to the tibial insert, and tibiofemoral contact forces were evaluated at different knee flexion angles. Contact stresses on the tibial insert were calculated using finite element analysis. The AP position at the medial compartment was consistent for all models. From 0° to 120°, the femoral component in KA models showed larger posterior movement at the lateral compartment (0.3, 6.8, and 17.7 mm in MA, KA3, and KA5 models, respectively) and larger external rotation (4.2°, 12.0°, and 16.8° in the MA, KA3, and KA5 models, respectively) relative to the tibial component. Concerning the mediolateral position of the femoral component, the KA5 model was positioned more medially. The contact forces at the lateral compartment of all models were larger than those at the medial compartment at >60° of knee flexion. The peak contact stresses on the tibiofemoral joint at 90° and 120° of knee flexion were higher in the KA models. However, the peak contact stresses of the KA models at every flexion angle were <20 MPa. The KA technique in MPK can successfully achieve near-normal knee kinematics; however, there may be a concern for higher contact stresses on the tibial insert.


1997 ◽  
Vol 119 (4) ◽  
pp. 379-385 ◽  
Author(s):  
T. A. Martens ◽  
M. L. Hull ◽  
S. M. Howell

This study was conducted to validate a new in vitro method to expose the medial compartment of the knee to be used in subsequent studies aimed at examining the load bearing capabilities of medial meniscal allografts. The new method involves an osteotomy and reattachment of the medial femoral condyle. The primary hypothesis was that the new method does not alter tibio-femoral contact pressure and area. To validate this method, the baseline contact pressure of the intact medial compartment was measured using a new nondestructive procedure for inserting pressure measurement film into the intact medial hemijoint. A secondary and related hypothesis was that incising the coronary ligament, a destructive method used by previous investigators to position pressure measurement film, alters the normal tibio-femoral contact pressure. To test these hypotheses, Fuji Prescale pressure-sensitive film was used to measure both tibio-femoral contact pressure and area within the medial compartment of the (1) intact knee, (2) the knee after osteotomizing and reattaching the medial femoral condyle, and (3) the osteotomized knee with an incised coronary ligament, using seven cadaver specimens. Measurements were taken at a compressive load of approximately two times body weight with the knee in 0, 15, 30, 45 deg of flexion. No significant differences between the intact and osteotomized knee were detected. Likewise, no significant differences were observed between the osteotomized knee and the osteotomized knee with an incised coronary ligament. These results confirm the utility of the new method in exposing the medial compartment for manipulation and placement of medial meniscal allografts in future studies examining the load-bearing characteristics of meniscal allografts.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
M. L. Roemhildt ◽  
B. D. Beynnon ◽  
M. Gardner-Morse ◽  
K. Anderson ◽  
G. J. Badger

This study describes the first application of a varus loading device (VLD) to the rat hind limb to study the role of sustained altered compressive loading and its relationship to the initiation of degenerative changes to the tibio-femoral joint. The VLD applies decreased compressive load to the lateral compartment and increased compressive load to the medial compartment of the tibio-femoral joint in a controlled manner. Mature rats were randomized into one of three groups: unoperated control, 0% (sham), or 80% body weight (BW). Devices were attached to an animal’s leg to deliver altered loads of 0% and 80% BW to the experimental knee for 12 weeks. Compartment-specific material properties of the tibial cartilage and subchondral bone were determined using indentation tests. Articular cartilage, calcified cartilage, and subchondral bone thicknesses, articular cartilage cellularity, and degeneration score were determined histologically. Joint tissues were sensitive to 12 weeks of decreased compressive loading in the lateral compartment with articular cartilage thickness decreased in the peripheral region, subchondral bone thickness increased, and cellularity of the midline region decreased in the 80% BW group as compared to the 0% BW group. The medial compartment revealed trends for diminished cellularity and aggregate modulus with increased loading. The rat-VLD model provides a new system to evaluate altered quantified levels of chronic in vivo loading without disruption of the joint capsule while maintaining full use of the knee. These results reveal a greater sensitivity of tissue parameters to decreased loading versus increased loading of 80% BW for 12 weeks in the rat. This model will allow future mechanistic studies that focus on the initiation and progression of degenerative changes with increased exposure in both magnitude and time to altered compressive loads.


Sign in / Sign up

Export Citation Format

Share Document