Elastic-Plastic FEM Analysis of Deformations of a Cylinder Subjected to Severe Uniaxial and Bilateral Compression by Flat Plates

Author(s):  
M. Gotoh ◽  
Y. Shibata

Abstract Uni-lateral and bi-lateral elastic-plastic compressions of a circular cylinder with three different wall thicknesses by flat plates are numerically analysed by the Finite Element Method (FEM). J2-flow theory (J2F), and J2-Gotoh’s corner theory (J2G) which was previously proposed by one of the authors are used as the constitutive equations. In the case of uni-lateral compression, the cylinder is compressed up to a completely flattened shape, which is considered a kind of plastic forming processes. The deformed shapes and the compressive force are predicted better by J2G than by J2F. The spring-back behaviours are also analysed by imposing unloading process during deformation. The deformation process in the compression of a ring (plane stress state) and a spherical shell (axi-symmetric state) is also analysed. In the case of bi-lateral compression, the process is considered a kind of square-tube forming. In its final stage, the cylinder deforms into a completely unexpected shape which could be thought of as a square tube reinforced with ribs. The J2G allows the process to proceed at a lower compressive force than that for J2F. The effect of n-value (the strain-hardedning exponent) on the deformation pattern is also discussed.

2021 ◽  
Vol 11 (7) ◽  
pp. 3168
Author(s):  
Gioia Fusaro ◽  
Xiang Yu ◽  
Zhenbo Lu ◽  
Fangsen Cui ◽  
Jian Kang

Crucial factors in window performance, such as natural ventilation and noise control, are generally conceived separately, forcing users to choose one over the other. To solve this dualism, this study aimed to develop an acoustic metamaterial (AMM) ergonomic window design to allow noise control without dependence on the natural ventilation duration and vice versa. First, the finite element method (FEM) was used to investigate the noise control performance of the acoustic metawindow (AMW) unit, followed by anechoic chamber testing, which also served as the validation of the FEM models. Furthermore, FEM analysis was used to optimise the acoustic performance and assess the ventilation potential. The numerical and experimental results exhibited an overall mean sound reduction of 15 dB within a bandwidth of 380 to 5000 Hz. A good agreement between the measured and numerical results was obtained, with a mean variation of 30%. Therefore, the AMW unit optimised acoustic performance, resulting in a higher noise reduction, especially from 50 to 500 Hz. Finally, most of the AMW unit configurations are suitable for natural ventilation, and a dynamic tuned ventilation capacity can be achieved for particular ranges by adjusting the window’s ventilation opening. The proposed designs have potential applications in building acoustics and engineering where natural ventilation and noise mitigation are required to meet regulations simultaneously.


Author(s):  
Shiro Kato ◽  
Shoji Nakazawa ◽  
Yoichi Mukaiyama ◽  
Takayuki Iwamoto

The present study proposes an efficient scheme to estimate elastic-plastic buckling load of a shallow grid dome stiffened by diagonal braces. The dome is circular in plan. It is assumed to be subject to a uniform vertical load and to be supported by a substructure composed of columns and anti-earthquake braces. Based on FEM parametric studies considering various configurations and degrees of local imperfections, a set of formulations are presented to estimate the elastic-plastic buckling load. In the scheme, the linear buckling load, elastic buckling load, and imperfection sensitivity are first presented in terms of related parameters, and the elasticplastic buckling load is then estimated by a semi-empirical formula in terms of generalized slenderness ratio using a corresponding plastic load. For the plastic load, the present scheme adopts a procedure that it is calculated by a linear elastic FEM analysis, while an alternative formula for the plastic load is also proposed based on a shell membrane theory. The validity of the estimation scheme is finally confirmed through comparison with the results based on FEM nonlinear analysis. The formulations are so efficient and simple that the estimation may be conducted for preliminary design purposes almost with a calculator. .


1989 ◽  
Vol 111 (3) ◽  
pp. 430-439 ◽  
Author(s):  
K. Komvopoulos

The elastic-plastic contact problem of a layered half-space indented by a rigid surface is solved with the finite element method. The case of a layer stiffer and harder than the substrate is analyzed and solutions for the contact pressure, subsurface stresses and strains, and location, shape, and growth of the plastic zone are presented for various layer thicknesses and indentation depths. Finite element results for a halfspace having the substrate properties are also given for comparison purposes. Differences between the elastic and elastic-plastic solutions are discussed and the significance of critical parameters such as the layer thickness, mechanical properties of layer and substrate materials, indentation depth, and interfacial friction on the threshold of plasticity, contact pressure distribution, and growth of the plastic zone are examined. Additionally, the mechanisms of layer decohesion and subsurface crack initiation are interpreted in light of the results obtained in this study.


Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Kuniyoshi Obata ◽  
Tsukasa Ayuzawa

Microvia formation technology using lasers has become the dominant method for drilling microvia called blind via-holes (BVHs) in printed wiring boards (PWBs). Laser direct drilling (LDD), drilling directly outer copper foil by laser, has attracted attention as a novel method. In particular, when copper and resin with different processing thresholds are drilled at the same time, an overhang defect occurs on the drilled hole. However, the overhang generation mechanism has not been clarified. Therefore, we investigated it by detailed observation of the drilled-hole section. Moreover, the overhang length was estimated using the finite element method (FEM). Influences of surface treatment of outer copper foil and thermal properties of the build-up layer were evaluated experimentally and analytically. Consequently, an experiment with a prototype PWB with silica filler added in the build-up layer was carried out. Using the prototype PWBs, the overhang was reduced as shown in FEM analysis results.


Sign in / Sign up

Export Citation Format

Share Document