An Algorithm for Two-Dimensional Geometric Boundary Construction From Finite Element Node Displacement Data

Author(s):  
Andrei G. Jablokow ◽  
Brian J. Gilmore ◽  
Kent Clark

Abstract This paper describes a system for constructing geometric models from elastically deflected finite element meshes. Two dimensional boundary curves are constructed by fitting B-Spline curves to the deflected Finite Element model. Cubic B-Splines are generated using least squares fitting techniques to the boundary curves of the Finite Element results. The fitted curves are connected end-to-end. The algorithm is useful after analysis for interfacing analysis results with design data in a shape optimization system based on Finite Element techniques.

1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


1997 ◽  
Vol 82 (6) ◽  
pp. 2036-2044 ◽  
Author(s):  
Andreas O. Frank ◽  
C. J. Charles Chuong ◽  
Robert L. Johnson

Frank, Andreas O., C. J. Charles Chuong, and Robert L. Johnson. A finite-element model of oxygen diffusion in the pulmonary capillaries. J. Appl. Physiol. 82(6): 2036–2044, 1997.—We determined the overall pulmonary diffusing capacity (Dl) and the diffusing capacities of the alveolar membrane (Dm) and the red blood cell (RBC) segments (De) of the diffusional pathway for O2 by using a two-dimensional finite-element model developed to represent the sheet-flow characteristics of pulmonary capillaries. An axisymmetric model was also considered to assess the effect of geometric configuration. Results showed the membrane segment contributing the major resistance, with the RBC segment resistance increasing as O2 saturation ([Formula: see text]) rises during the RBC transit: RBC contributed 7% of the total resistance at the capillary inlet ([Formula: see text] = 75%) and 30% toward the capillary end ([Formula: see text] = 95%) for a 45% hematocrit (Hct). Both Dm and Dlincreased as the Hct increased but began approaching a plateau near an Hct of 35%, due to competition between RBCs for O2 influx. Both Dm and Dl were found to be relatively insensitive (2∼4%) to changes in plasma protein concentration (28∼45%). Axisymmetric results showed similar trends for all Hct and protein concentrations but consistently overestimated the diffusing capacities (∼2.2 times), primarily because of an exaggerated air-tissue barrier surface area. The two-dimensional model correlated reasonably well with experimental data and can better represent the O2 uptake of the pulmonary capillary bed.


Sign in / Sign up

Export Citation Format

Share Document