scholarly journals Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop

Author(s):  
Toshiyasu Ishii ◽  
R. Gordon Kirk

Abstract The active magnetic bearing (AMB) is a relatively new technology which has many advantages compared with conventional bearing design. In an AMB system, the rolling-element back-up bearings are indispensable to protect the magnetic bearing rotor and stator, and other stationary seals along the rotor shaft. In this paper, a theoretical formulation is proposed and solved numerically to examine the transient response of the flexible rotor, from the time just previous to the AMB shuts down and including the rotor drop onto the back-up bearing. The backward whirl of the rotor, which may lead to the destructive damage of the machiner, has been analytically predicted at very light support damping and very high support damping. Also, the vibration due to the non-linearity of the contact point geometry has been included in the analysis. The influence of the support damping on the displacement of the disk and also the contact force between the journal and the inner-race of the back-up bearing have been computed for various rotor system parameters.

1996 ◽  
Vol 118 (2) ◽  
pp. 154-163 ◽  
Author(s):  
T. Ishii ◽  
R. Gordon Kirk

The active magnetic bearing (AMB) is a relatively new technology which has many advantages compared with conventional bearing design. In an AMB system, the rolling-element back-up bearings are indispensable to protect the magnetic bearing rotor and stator, and other stationary seals along the rotor shaft. In this paper, a theoretical formulation is proposed and solved numerically to examine the transient response of the flexible rotor, from the time just previous to when the AMB shuts down and including the rotor drop onto the back-up bearing. The backward whirl of the rotor, which may lead to the destructive damage of the machinery, has been analytically predicted at very light support damping and very high support damping. Also, the vibration due to the nonlinearity of the contact point geometry has been included in the analysis. The influence of the support damping on the displacement of the disk and also the contact force between the journal and the inner-race of the back-up bearing have been computed for various rotor system parameters. By comparing these results with the optimum support damping for the simple flexible rotor model, it is shown that this support damping optimization can be applicable for specifying the required optimum range of support damping for the back-up bearings of AMB systems.


2013 ◽  
Vol 284-287 ◽  
pp. 2330-2336
Author(s):  
Kuan Yu Chen ◽  
Pi Cheng Tung ◽  
Yi Hua Fan

This paper presents a new switching control scheme for an active magnetic bearing (AMB) system using self-tuning fuzzy proportional-integral-derivative (PID) control. The research process consists of three stages. First, four types of self-tuning fuzzy PID-type controllers (FPIDCs) consisting of two most commonly used fuzzy inference systems: Mamdani and Takagi-Sugeno types, and two efficient parameter adaptive methods: function tuner and relative rate observer, are used to control a highly nonlinear AMB system, respectively. Hence, there are two kinds of FPIDCs can be obtained by comparing experimental results of these tests: one has the fastest transient response and the other has the minimum steady-state error. Next, the switching-type self-tuning FPIDC is proposed by combining the two kinds of FPIDCs. Namely, the AMB system is dominated by the scheme with the fastest transient response when the rotor is at rest and by the one with the best steady-state performance when the rotor is in rotation. Finally, experimental results demonstrate that the proposed switching-type self-tuning FPIDC performs better overall performance than the other self-tuning FPIDCs, particularly when controlling an AMB system.


2021 ◽  
Vol 19 (5) ◽  
pp. 448-471
Author(s):  
SUKANTA DEBNATH

Active magnetic bearing (AMB) is a substitute of conventional bearing, which provides electromagnetic force to support the rotating part respecting the stator. The utilization of electromagnetic force makes this bearing “active”. The attraction force of an AMB system can be control by manipulating the input so that the rotor can be levitate at required position. As lot of limitation exist in passive magnetic bearing, the AMB is very useful in modern applications. Due to frictionless nature of magnetic bearing and non-necessity of lubricants, now-a-days AMB is taking place as the alternate of any other bearing in multiple applications of growing industry. Adequate knowledge of essential components is necessary for successful implementation of any active magnetic bearing design. So, In this paper, the magnetic analysis has been analyzed for the different types of single and multi-axis AMB using ANSYS Maxwell with extensively reviewed components.


Author(s):  
Norbert Steinschaden ◽  
Helmut Springer

Abstract In order to get a better understanding of the dynamics of active magnetic bearing (AMB) systems under extreme operating conditions a simple, nonlinear model for a radial AMB system is investigated. Instead of the common way of linearizing the magnetic forces at the center position of the rotor with respect to rotor displacement and coil current, the fully nonlinear force to displacement and the force to current characteristics are used. The AMB system is excited by unbalance forces of the rotor. Especially for the case of large rotor eccentricities, causing large rotor displacements, the behaviour of the system is discussed. A path-following analysis of the equations of motion shows that for some combinations of parameters well-known nonlinear phenomena may occur, as, for example, symmetry breaking, period doubling and even regions of global instability can be observed.


2001 ◽  
Vol 124 (2) ◽  
pp. 406-413 ◽  
Author(s):  
M. O. T. Cole ◽  
P. S. Keogh ◽  
C. R. Burrows

The dynamic behavior of a rolling element bearing under auxiliary operation in rotor/magnetic bearing systems is analyzed. When contact with the rotor occurs, the inner race experiences high impact forces and rapid angular acceleration. A finite element model is used to account for flexibility of the inner race in series with non-linear ball stiffnesses arising from the ball-race contact zones. The dynamic conditions during rotor/inner race contact, including ball/race creep, are deduced from a non-linear matrix equation. The influences of bearing parameters are considered together with implications for energy dissipation in the bearing.


2014 ◽  
Vol 494-495 ◽  
pp. 685-688
Author(s):  
Rong Gao ◽  
Gang Luo ◽  
Cong Xun Yan

Active magnetic bearing (AMB) system is a complex integrated system including mechanics, electronic and magnetism. In order to research for the basic dynamic characteristic of rotor supported by AMB, it is necessary to present mathematics method. The dynamics formula of AMB is established using theory means of dynamics of rotator and mechanics of vibrations. At the same tine, the running stability of rotor is analyzed and the example is presented in detail.


2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
W. Zhang ◽  
R. Q. Wu ◽  
B. Siriguleng

The asymptotic perturbation method is used to analyze the nonlinear vibrations and chaotic dynamics of a rotor-active magnetic bearing (AMB) system with 16-pole legs and the time-varying stiffness. Based on the expressions of the electromagnetic force resultants, the influences of some parameters, such as the cross-sectional area Aα of one electromagnet and the number N of windings in each electromagnet coil, on the electromagnetic force resultants are considered for the rotor-AMB system with 16-pole legs. Based on the Newton law, the governing equation of motion for the rotor-AMB system with 16-pole legs is obtained and expressed as a two-degree-of-freedom system with the parametric excitation and the quadratic and cubic nonlinearities. According to the asymptotic perturbation method, the four-dimensional averaged equation of the rotor-AMB system is derived under the case of 1 : 1 internal resonance and 1 : 2 subharmonic resonances. Then, the frequency-response curves are employed to study the steady-state solutions of the modal amplitudes. From the analysis of the frequency responses, both the hardening-type nonlinearity and the softening-type nonlinearity are observed in the rotor-AMB system. Based on the numerical solutions of the averaged equation, the changed procedure of the nonlinear dynamic behaviors of the rotor-AMB system with the control parameter is described by the bifurcation diagram. From the numerical simulations, the periodic, quasiperiodic, and chaotic motions are observed in the rotor-active magnetic bearing (AMB) system with 16-pole legs, the time-varying stiffness, and the quadratic and cubic nonlinearities.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Seng-Chi Chen ◽  
Van-Sum Nguyen ◽  
Dinh-Kha Le ◽  
Nguyen Thi Hoai Nam

Studies on active magnetic bearing (AMB) systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC). The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC), the parameters of which are adjusted using a radial basis function neural network (RBFNN), is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.


Sign in / Sign up

Export Citation Format

Share Document