asymptotic perturbation
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 26 (2) ◽  
pp. 33
Author(s):  
Muhammad Usman ◽  
Shaaban Abdallah ◽  
Mudassar Imran

In this work, the response of a ship rolling in regular beam waves is studied. The model is one degree of freedom model for nonlinear ship dynamics. The model consists of the terms containing inertia, damping, restoring forces, and external forces. The asymptotic perturbation method is used to study the primary resonance phenomena. The effects of various parameters are studied on the stability of steady states. It is shown that the variation of bifurcation parameters affects the bending of the bifurcation curve. The slope stability theorems are also presented.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Mithilesh Singh ◽  
Seema Sharma ◽  
Sunil Rawan

AbstractAn asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was obtained in Yang and Srivastava (Commun Nonlinear Sci Numer Simul 29(1–3):499–504, 2015). In this paper, we obtain the numerical solution of damped forced oscillator problems by employing the operational matrix of integration of Bernoulli orthonormal polynomials. The operational matrix of integration is determined with the help of the integral operator on Bernoulli orthonormal polynomials. Numerical examples of two different problems of spring are given to delineate the performance and perfection of this approach and compared the results with the exact solution.


2020 ◽  
Vol 41 (12) ◽  
pp. 1861-1880
Author(s):  
Li Ma ◽  
Minghui Yao ◽  
Wei Zhang ◽  
Dongxing Cao

AbstractTurbo-machineries, as key components, have a wide utilization in fields of civil, aerospace, and mechanical engineering. By calculating natural frequencies and dynamical deformations, we have explained the rationality of the series form for the aerodynamic force of the blade under the subsonic flow in our earlier studies. In this paper, the subsonic aerodynamic force obtained numerically is applied to the low pressure compressor blade with a low constant rotating speed. The blade is established as a pre-twist and presetting cantilever plate with a rectangular section under combined excitations, including the centrifugal force and the aerodynamic force. In view of the first-order shear deformation theory and von-Kármán nonlinear geometric relationship, the nonlinear partial differential dynamical equations for the warping cantilever blade are derived by Hamilton’s principle. The second-order ordinary differential equations are acquired by the Galerkin approach. With consideration of 1:3 internal resonance and 1/2 sub-harmonic resonance, the averaged equation is derived by the asymptotic perturbation methodology. Bifurcation diagrams, phase portraits, waveforms, and power spectrums are numerically obtained to analyze the effects of the first harmonic of the aerodynamic force on nonlinear dynamical responses of the structure.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Julius Engelsöy ◽  
Jorge Larana-Aragon ◽  
Bo Sundborg ◽  
Nico Wintergerst

Abstract Correlation functions of most composite operators decay exponentially with time at non-zero temperature, even in free field theories. This insight was recently codified in an OTH (operator thermalisation hypothesis). We reconsider an early example, with large N free fields subjected to a singlet constraint. This study in dimensions d > 2 motivates technical modifications of the original OTH to allow for generalised free fields. Furthermore, Huygens’ principle, valid for wave equations only in even dimensions, leads to differences in thermalisation. It works straightforwardly when Huygens’ principle applies, but thermalisation is more elusive if it does not apply. Instead, in odd dimensions we find a link to resurgence theory by noting that exponential relaxation is analogous to non- perturbative corrections to an asymptotic perturbation expansion. Without applying the power of resurgence technology we still find support for thermalisation in odd dimensions, although these arguments are incomplete.


2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
W. Zhang ◽  
R. Q. Wu ◽  
B. Siriguleng

The asymptotic perturbation method is used to analyze the nonlinear vibrations and chaotic dynamics of a rotor-active magnetic bearing (AMB) system with 16-pole legs and the time-varying stiffness. Based on the expressions of the electromagnetic force resultants, the influences of some parameters, such as the cross-sectional area Aα of one electromagnet and the number N of windings in each electromagnet coil, on the electromagnetic force resultants are considered for the rotor-AMB system with 16-pole legs. Based on the Newton law, the governing equation of motion for the rotor-AMB system with 16-pole legs is obtained and expressed as a two-degree-of-freedom system with the parametric excitation and the quadratic and cubic nonlinearities. According to the asymptotic perturbation method, the four-dimensional averaged equation of the rotor-AMB system is derived under the case of 1 : 1 internal resonance and 1 : 2 subharmonic resonances. Then, the frequency-response curves are employed to study the steady-state solutions of the modal amplitudes. From the analysis of the frequency responses, both the hardening-type nonlinearity and the softening-type nonlinearity are observed in the rotor-AMB system. Based on the numerical solutions of the averaged equation, the changed procedure of the nonlinear dynamic behaviors of the rotor-AMB system with the control parameter is described by the bifurcation diagram. From the numerical simulations, the periodic, quasiperiodic, and chaotic motions are observed in the rotor-active magnetic bearing (AMB) system with 16-pole legs, the time-varying stiffness, and the quadratic and cubic nonlinearities.


2019 ◽  
Vol 50 (1) ◽  
pp. 179
Author(s):  
Yang Hui ◽  
Zhou Ke ◽  
Hou Wanting ◽  
Hong Wenming

2019 ◽  
Vol 65 ◽  
pp. 526-534 ◽  
Author(s):  
Dongxing Cao ◽  
Yanhui Gao ◽  
Jiaojiao Wang ◽  
Minghui Yao ◽  
Wei Zhang

Author(s):  
Ruiqin Wu ◽  
Wei Zhang ◽  
Ming Hui Yao

In this paper, we use the asymptotic perturbation method to analyze the nonlinear dynamics of a rotor-active magnetic bearing (AMB) system with 16-pole legs. The motion governing equation is derived by using classical Newton law. The resulting dimensionless equation of motion for the system is expressed as a two-degree-of-freedom system including the parametric excitation, quadratic and cubic nonlinearities. The asymptotic perturbation method is used to obtain the averaged equation when the primary resonance and 1/2 sub-harmonic resonance are taken into consideration. From the averaged equations obtained, numerical simulations are presented to investigate the modulation of vibration amplitudes of the rotor-AMB system. Based on a specific set of parameters, it is found that there exist the periodic, quasi-periodic and chaotic motions in the modulated amplitude of the rotor in the system.


Sign in / Sign up

Export Citation Format

Share Document