A Novel Design Procedure for Reducing Vibration and Noise in Gears

Author(s):  
K. Y. Yoon ◽  
S. S. Rao

Abstract A new method is proposed for reducing vibration and noise of involute gears. The method is based on the use of cubic spline curves for gear tooth profile modification. The tooth profile is constrained to assume an involute shape during the loaded operation. Thus the new gear profile assures conjugate motion at all points along the line of action. The new profile is found to result in a more uniform static transmission error compared to standard involute profile thereby contributing to the improvement of vibration and noise characteristics of the gear.

Author(s):  
Cheon-Jae Bahk ◽  
Robert G. Parker

This study investigates the impact of tooth profile modification on planetary gear dynamic response. Micro-scale geometric deviations from an involute gear tooth profile add an additional excitation source, potentially reducing gear vibration. In order to take account of the excitation, tooth profile modification is included in an analytical planetary gear model. Nonlinearity due to tooth contact loss is considered. Time-varying mesh stiffness and both rotational and translational gear motions are modeled. The accuracy of the proposed model for dynamic analysis is correlated against a benchmark finite element analysis. Perturbation analysis is employed to obtain a closed-form approximation of planetary gear dynamic response with tooth profile modification. Mathematical expressions from the perturbation solution allow one to easily estimate the peak amplitude of resonant response using known parameters. Variation of the peak amplitude with the amount and the length of profile modification illustrates the effect of tooth profile modification on planetary gear dynamic response. For a given external load, the tooth profile modification parameters for minimal response are readily obtained. Static transmission error and dynamic response are minimized at different amounts of profile modification, which contradicts common practical thinking regarding strong correlation between static transmission error and dynamic response. Contrary to the expectation of further reduced vibration, the combination of the optimum sun-planet and ring-planet mesh tooth profile modifications that minimizes response when applied individually increases dynamic response.


2007 ◽  
Vol 10-12 ◽  
pp. 317-321 ◽  
Author(s):  
Zheng Li ◽  
K. Mao

The gear design always be focus on analyzing the static performance (strength, stress, friction) and dynamic performance (inertia, noise, vibration), and especially for dynamic, the noise and vibration of gear are big problems. Actually, the main reason of noise and vibration is transmission error between master and slave gears, but the error must exist in any manufacture process. To decrease harmful noise and vibration, the most effective method is “tooth profile modification”, which is by tip relief or root relief for modifying geometry profile of gear tooth to regulate transmission error. In the paper, the transmission error of original model and modified model will be compared to show the gear profile modification will influence the transmission error obviously.


1996 ◽  
Vol 118 (1) ◽  
pp. 1-6 ◽  
Author(s):  
K. Y. Yoon ◽  
S. S. Rao

A novel method was presented by the authors to minimize the static transmission error using cubic splines (C.S.) for gear tooth profile. A reduction in the transmission error is expected to reduce the gear vibration and noise by lowering the dynamic tooth load in a meshing cycle. To establish this fact, a dynamic analysis of the gear drive with involute tooth and modified tooth profiles (using C.S.) is performed. For this, first the tooth deformation is found and then the tooth dynamic load is determined for all reasonable speeds. A parametric study is conducted to establish the superiority of the C.S. based gear profile over the involute profile as well as the other profiles based on the use of linear and parabolic tip reliefs.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


2006 ◽  
Vol 129 (9) ◽  
pp. 969-980 ◽  
Author(s):  
Stephen P. Radzevich

In this paper, a novel modified scheme and effective computer representation for design of a plunge shaving cutter is presented. The paper aims to develop a novel design of shaving cutter for plunge shaving of precision involute gears. The study is carried out on the premise of satisfaction of the fifth necessary condition of proper part surface generation (PSG) when designing the plunge shaving cutter. In the current study, the author’s earlier developed DG/K method of surface generation is used together with the principal elements of analytical mechanics of gears. (The DG/K method is based on fundamental results obtained in differential geometry of surfaces, and on kinematics of multi-parametric motion of a rigid body in the E3 space. The interested reader may wish to go for details to the monograph: Radzevich, S.P., Fundamentals of Surface Generation, Monograph, Kiev, Rastan, 2001, 592 pp., and to: Radzevich, S.P., Sculptured Surface Machining on Multi-Axis NC Machine, Monograph, Kiev, Vishcha Schola, 1991, 192 pp.) In the particular case under consideration, the method employs (a) an analytical description of the gear tooth surface to be machined, (b) configuration of the plunge shaving cutter relative to the involute gear, (c) analytical representation of the coordinate systems transformations, and (d) the fifth condition of proper PSG that is adapted to finishing of precision involute gears. The fifth condition of proper PSG is investigated in the paper. On the premise of the obtained results of the investigation, a novel design of plunge shaving cutter for finishing of precision involute gears is proposed. The developed novel design of plunge shaving cutter can be used on shaving machines available on the market, e.g. on Gleason’s new Genesis™ 130SV computer numerical control (CNC) shaving machine.


2018 ◽  
Vol 167 ◽  
pp. 02013
Author(s):  
Jeonghyun Park ◽  
Changjun Seo ◽  
Kwangsuck Boo ◽  
Heungseob Kim

Gear systems are extensively employed in mechanical systems since they allow the transfer of power with a variety of gear ratios. So gears cause the inherent deflections and deformations due to the high pressure which occurs between the meshing teeth when transmit power and results in the transmission error. It is usually assumed that the transmission error and variation of the gear mesh stiffness are the dominant excitation mechanisms. Predicting the static transmission error is a necessary condition to reduce noise radiated from the gear systems. This paper aims to investigate the effect of tooth profile modifications on the transmission error of helical gear. The contact stress analysis was implemented for different roll positions to find out the most critical roll angle in view point of root flank stress. The PPTE (peak-to-peak of transmission error) is estimated at the roll angles by different loading conditions with two dimensional FEM. The optimal profile modification from the root to the tip is proposed.


Author(s):  
Edward E. Osakue ◽  
Lucky Anetor

A simple but accurate combined computationaland graphical method for creating drawings and solid models of standard involute gears is presented. The method is predicated on the fact that the gear tooth angle at the base circle is fixed for a gear of specified module or size. As the contact point moves along the involute curve from the base circle point through the pitch point to the addendum circle point; the involute and gear tooth contact angles change continuously but their sum is fixed at the value it was at the base circle. This allows the coordinates of points on the involute curve to be generated analytically without employing the roll angle as current available methods. The generated data can be implemented in any computer design drafting (CDD) package platform to create an accurate gear tooth profile. The computations are done with Microsoft Excel which generates the graphical data for the gear tooth profile that are used in the CDD package. The required inputs to the Excel spreadsheet are the gear module size, the pressure angle, the number of teeth and the radial number of steps. A gearset example is considered and created with this method. The solid model of the example gearset in mesh and 2D drawing of the pinion are presented.


2012 ◽  
Vol 499 ◽  
pp. 138-142
Author(s):  
Zhe Yuan ◽  
Yu Guo

The tooth profile modification can generally choose straight line modification, parabolic modification and arc modification. In order to accurately determine the tooth profile modification curves, basing on analysis of the vibration that effected by transmission error, a pair of gears meshing process is simulated with FEM approach. Aiming at reducing the fluctuation of transmission error, the transmission error curves of straight line modification, parabolic modification and arc modification with the same modification parameters are plotted, and the best modifications curve is obtained. The research shows that the approach is accurate to choose the best modification curve, and reduce the fluctuation of transmission error greatly. The approach illustrated in this paper provides a new way for designing the noiseless gears.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Tugan Eritenel ◽  
Robert G. Parker

This work provides an analytical solution for the nonlinear vibration of gear pairs that exhibit partial and total contact loss. Partial contact loss is where parts of contact lines lose contact although other parts remain in contact. The gear tooth surface modifications admit an arbitrary combination of profile and lead modifications. Modifications are a source of partial contact loss. The analysis also applies for total contact loss. Unlike models in the literature that are excited by static transmission error or time-varying mesh stiffness, the excitation and the nonlinearity are not a priori specified. Instead, the force-deflection function of the gear pair is provided by an independent source, such as a finite element model or Hertz contact formula. The manipulation of the single-degree-of-freedom oscillator equation of motion yields the excitation and the nonlinearity that arise from Fourier and Taylor series expansions of the force-deflection function. These expansions capture the essential contact behavior that includes tooth profile and lead modifications as well as the bending and shear flexibility of the gear teeth and gear blanks. The method of multiple scales gives the steady-state dynamic response in terms of a frequency-amplitude relation. Comparisons with gear vibration experiments and simulations from the literature that include spur and helical gears with tooth profile and lead modifications verify the method.


Sign in / Sign up

Export Citation Format

Share Document