Robust Design by Matching the Design With Manufacturing Variation Patterns
Abstract This paper deals with robust design problems in which variations on design variables have significant correlation. Manufacturing errors often affect design variables with characteristic patterns, that is, the variations are coupled. Robust optimization seeks designs with optimal and robust performance. Designers should match the design to the Manufacturing Variation Patterns (MVP) in the constrained robust optimization procedure. This study focuses on matching the variation patterns found in typical manufacturing processes. It uses quadrature experimental design to approximate the performance variation within the patterns. We redefine the robust constraint activity for designs using MVP and propose our procedure to search for the robust feasible designs. Theoretical development of manufacturing variation matching leads to our case study of heat treated shaft design with minimum dimensional distortion. The paper also outlines our future application in injection molding gear design and challenge in the identification of nonlinear correlated MVP.