Experimental Periodic Localized Motions in Coupled Beams With Active Nonlinearities

Author(s):  
Melvin E. King ◽  
Johannes Aubrecht ◽  
Alexander F. Vakakis

Abstract Steady-state nonlinear motion confinement is experimentally studied in a system of weakly coupled cantilever beams with active stiffness nonlinearities. Quasi-static swept-sine tests are performed by periodically forcing one of the beams at frequencies close to the first two closely-spaced modes of the coupled system, and experimental nonlinear frequency response curves for certain nonlinearity levels are generated. Of particular interest is the detection of strongly localized steady-state motions, wherein vibrational energy becomes spatially confined mainly to the directly excited beam. Such motions exist in neighborhoods of strongly localized anti-phase nonlinear normal modes (NNMs) which bifurcate from a spatially extended NNMs of the system. Steady-state nonlinear motion confinement is an essentially nonlinear phenomenon with no counterpart in linear theory, and can be implemented in vibration and shock isolation designs of mechanical systems.

Author(s):  
J. P. Noël ◽  
T. Detroux ◽  
L. Masset ◽  
G. Kerschen ◽  
L. N. Virgin

In the present paper, isolated response curves in a nonlinear system consisting of two masses sliding on a horizontal guide are examined. Transverse springs are attached to one mass to provide the nonlinear restoring force, and a harmonic motion of the complete system is imposed by prescribing the displacement of their supports. Numerical simulations are carried out to study the conditions of existence of isolated solutions, their bifurcations, their merging with the main response branch and their basins of attraction. This is achieved using tools including nonlinear normal modes, energy balance, harmonic balance-based continuation and bifurcation tracking, and global analysis.


Author(s):  
E. Gourdon ◽  
S. Coutel ◽  
C. H. Lamarque ◽  
S. Pernot

The present work aims to study the effect of a nonlinear energy sink (NES) with relatively small mass on the dynamics of a coupled system under impulsion with free oscillations. The process of energy transfer is governed by structure of damped nonlinear normal modes of the system. In particular the energy pumping occurs if the nonlinear normal mode is quickly broken down with rather abrupt decrease of both amplitudes, i.e. a bifurcation (brutal change of frequency) is associated with the breakdown of the resonant regime of vibrations. The theoretical effects are experimentally verified with a mechanical experiment which confirms the above results by using a small building model. To identify those frequency migrations, a new wavelet-based methodology, namely quasi-continuous wavelet method, is used.


Author(s):  
Ruqia Ikram ◽  
Asif Israr

This study presents the vibration characteristics of plate with part-through crack at random angles and locations in fluid. An experimental setup was designed and a series of tests were performed for plates submerged in fluid having cracks at selected angles and locations. However, it was not possible to study these characteristics for all possible crack angles and crack locations throughout the plate dimensions at any fluid level. Therefore, an analytical study is also carried out for plate having horizontal cracks submerged in fluid by adding the influence of crack angle and crack location. The effect of crack angle is incorporated into plate equation by adding bending and twisting moments, and in-plane forces that are applied due to antisymmetric loading, while the influence of crack location is also added in terms of compliance coefficients. Galerkin’s method is applied to get time dependent modal coordinate system. The method of multiple scales is used to find the frequency response and peak amplitude of submerged cracked plate. The analytical model is validated from literature for the horizontally cracked plate submerged in fluid as according to the best of the authors’ knowledge, literature lacks in results for plate with crack at random angle and location in the presence of fluid following validation with experimental results. The combined effect of crack angle, crack location and fluid on the natural frequencies and peak amplitude are investigated in detail. Phenomenon of bending hardening or softening is also observed for different boundary conditions using nonlinear frequency response curves.


1968 ◽  
Vol 35 (2) ◽  
pp. 322-326 ◽  
Author(s):  
W. D. Iwan

The steady-state response of a system constrained by a limited slip joint and excited by a trigonometrically varying external load is discussed. It is shown that the system may possess such features as disconnected response curves and jumps in response depending on the strength of the system nonlinearity, the level of excitation, the amount of viscous damping, and the initial conditions of the system.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450009 ◽  
Author(s):  
Andrew Yee Tak Leung ◽  
Hong Xiang Yang ◽  
Ping Zhu

This paper is concerned with the steady state bifurcations of a harmonically excited two-member plane truss system. A two-degree-of-freedom Duffing system having nonlinear fractional derivatives is derived to govern the dynamic behaviors of the truss system. Viscoelastic properties are described by the fractional Kelvin–Voigt model based on the Caputo definition. The combined method of harmonic balance and polynomial homotopy continuation is adopted to obtain steady state solutions analytically. A parametric study is conducted with the help of amplitude-response curves. Despite its seeming simplicity, the mechanical system exhibits a wide variety of structural responses. The primary and sub-harmonic resonances and chaos are found in specific regions of system parameters. The dynamic snap-through phenomena are observed when the forcing amplitude exceeds some critical values. Moreover, it has been shown that, suppression of undesirable responses can be achieved via changing of viscosity of the system.


1980 ◽  
Vol 47 (3) ◽  
pp. 645-651 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-freedom Hamiltonian system is studied by deriving an approximation for the Poincare´ map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as an alternative to the usual linearized stability analysis based on Floquet theory. An example is given for which the Floquet theory approach fails to predict stability but for which the Poincare´ map approach succeeds.


2000 ◽  
Vol 122 (4) ◽  
pp. 437-442
Author(s):  
Shigeru Aoki ◽  
Takeshi Watanabe

This paper deals with steady-state response of the piping system with nonlinear support having hysteresis damping characteristics. Considering the energy loss for contact with a support, an analytical method of approximate solution for the beam, a one-span model of the piping system, with quadrilateral hysteresis loop characteristics is presented. Some numerical results of the approximate solution for the response curves and the mode shapes are shown. [S0094-9930(00)00204-3]


Sign in / Sign up

Export Citation Format

Share Document