On Dynamic Modeling of Robot Manipulators: The Method of Virtual Links

Author(s):  
R. F. Abo-Shanab ◽  
N. Sepehri ◽  
Q. Wu
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Guoning Si ◽  
Mengqiu Chu ◽  
Zhuo Zhang ◽  
Haijie Li ◽  
Xuping Zhang

This paper presents a novel method of dynamic modeling and design optimization integrated with dynamics for parallel robot manipulators. Firstly, a computationally efficient modeling method, the discrete time transfer matrix method (DT-TMM), is proposed to establish the dynamic model of a 3-PRR planar parallel manipulator (PPM) for the first time. The numerical simulations are performed with both the proposed DT-TMM dynamic modeling and the ADAMS modeling. The applicability and effectiveness of DT-TMM in parallel manipulators are verified by comparing the numerical results. Secondly, the design parameters of the 3-PRR parallel manipulator are optimized using the kinematic performance indices, such as global workspace conditioning index (GWCI), global condition index (GCI), and global gradient index (GGI). Finally, a dynamic performance index, namely, driving force index (DFI), is proposed based on the established dynamic model. The described motion trajectory of the moving platform is placed into the optimized workspace and the initial position is determined to finalize the end-effector trajectory of the parallel manipulator by the further optimization with the integrated kinematic and dynamic performance indices. The novelty of this work includes (1) developing a new dynamic model method with high computation efficiency for parallel robot manipulators using DT-TMM and (2) proposing a new dynamic performance index and integrating the dynamic index into the motion and design optimization of parallel robot manipulators.


Author(s):  
Wei Chen ◽  
Lipu Wei ◽  
Xiuping Yang ◽  
Jinjin Guo ◽  
Xizheng Zhang ◽  
...  

Considerable research attentions have recently been paid toward a mobile manipulator (a robot arm standing on a mobile platform) due to its extended workspace beyond the manipulator reach. Mobile manipulators have a wide range of potential applications where it is desirable to achieve higher degree of flexibility in transport and handling task. However, a vast number of research publications only focus on trajectory planning. This preliminary research work presents dynamic modeling and analysis of a mobile flexible robot arm with aims to provide insights for the design and control of such mobile robot manipulators. In this work, the dynamic model is developed using a computationally efficient method: Discrete Time Transfer Matrix Method (DT-TMM). The concepts and principle of DT-TMM are briefly overviewed, and then are applied to a mobile flexible robot arm for dynamic modeling with the detailed procedure. Numerical simulations and dynamic analyses are performed to illustrate the effectiveness of the proposed dynamic modeling method, and to provide the clues for our ongoing research work in the design and control of mobile robot manipulators.


Author(s):  
Deepak Shukla ◽  
Frank W. Paul

Abstract This paper presents a generic and systematic approach to solve the kinematics of series-parallel (hybrid) robot manipulators. The virtual link concept is a theoretical development to solve the kinematics of hybrid robots using the Denavit-Hartenberg notations. These notations have so far been applicable only to series robots. The virtual link concept employs fictitious serial links, termed “virtual links”, to transform a series-parallel manipulator into an equivalent series manipulator. The kinematics of this transformed series manipulator is solved using Denavit-Hartenberg notations. The results are mapped back to the actual manipulator using kinematic relations between fictitious serial links and the replaced parallel structure of the actual manipulator. This approach appears to be generic and systematic for analyzing the kinematics of series-parallel robot manipulators.


2005 ◽  
Vol 48 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Matthew Watson ◽  
Carl Byington ◽  
Douglas Edwards ◽  
Sanket Amin

2018 ◽  
Vol 23 (4) ◽  
pp. 774-799 ◽  
Author(s):  
Charles C. Driver ◽  
Manuel C. Voelkle

Sign in / Sign up

Export Citation Format

Share Document