Improving Spot Weld Models in Structural Dynamics

Author(s):  
Matteo Palmonella ◽  
Michael I. Friswell ◽  
Cristinel Mares ◽  
John E. Mottershead

This paper gives an overview of the finite element modelling of spot welds for the analysis of the dynamic response of structures. In particular models for dynamic analysis that use coarse meshes and equivalent parameters are considered. A major requirement for these models is their accuracy in predicting the dynamic behaviour of spot welded structures despite the low number of degrees of freedom. Three different models of spot welds are investigated [1–3] and for each model physical parameters have to be assigned based on engineering insight. The aim of the present paper is to improve the accuracy of these three models by searching for the optimum values of the parameters characterising the spot weld models using experimental data. For this purpose a benchmark structure has been analysed, consisting of a thin walled hat section beam made of two plates welded together by twenty spot welds. The predicted natural frequencies and modes of the benchmark structure have been compared to the experimental modes. Updating of the finite element models has been performed and the accuracy of the three models has been significantly improved.

Author(s):  
C F McCulloch ◽  
P Vanhonacker ◽  
E Dascotte

A method is proposed for updating finite element models of structural dynamics using the results of experimental modal analysis, based on the sensitivities to changes in physical parameters. The method avoids many of the problems of incompatibility and inconsistency between the experimental and analytical modal data sets and enables the user to express confidence in measured data and modelling assumptions, allowing flexible but automated model updating.


2005 ◽  
Vol 83 (8-9) ◽  
pp. 648-661 ◽  
Author(s):  
Matteo Palmonella ◽  
Michael I. Friswell ◽  
John E. Mottershead ◽  
Arthur W. Lees

Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2014 ◽  
Vol 2014 (4) ◽  
pp. 114-124
Author(s):  
Юрий Костенко ◽  
Yuriy Kostenko ◽  
Анатолий Чепурной ◽  
Anatoliy Chepurnoy ◽  
Александр Литвиненко ◽  
...  

The methods of direct perturbation for finite element models of thin-walled engineering constructions for sensitivity analysis of their strength, stiffness and dynamic characteristics to the change in their thickness are proposed. The approach for prediction of distribution for natural frequencies migration as result of change in their thickness are presented. The applicability of the linearized models to determine displacements, stresses and natural frequencies slightly thinned design compared to the nominal (original) are shown. The examples of test problems are given.


Author(s):  
Jordan J. Cox ◽  
Jeffrey A. Talbert ◽  
Eric Mulkay

Abstract This paper presents a method for naturally decomposing finite element models into sub-models which can be solved in a parallel fashion. The unique contribution of this paper is that the decomposition strategy comes from the geometric features used to construct the solid model that the finite element model represents. Domain composition and domain decomposition methods are used to insure global compatibility. These techniques reduce the N2 behavior of traditional matrix solving techniques, where N is the number of degrees of freedom in the global set of matrix equations, to a sum of m matrices with n2 behavior, where n represents the number of degrees of freedom in the smaller sub-model matrix equations.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Giovanni Bernardini ◽  
Fabio Cetta ◽  
Luigi Morino

A novel Nth order finite element for interior acoustics and structural dynamics is presented, with N arbitrarily large. The element is based upon a three-dimensional extension of the Coons patch technique, which combines high-order Lagrange and Hermite interpolation schemes. Numerical applications are presented, which include the evaluation of the natural frequencies and modes of vibration of (1) air inside a cavity (interior acoustics) and (2) finite-thickness beams and plates (structural dynamics). The numerical results presented are assessed through a comparison with analytical and numerical results. They show that the proposed methodology is highly accurate. The main advantages however are (1) its flexibility in obtaining different level of accuracy (p-convergence) simply by increasing the number of nodes, as one would do for h-convergence, (2) the applicability to arbitrarily complex configurations, and (3) the ability to treat beam- and shell-like structures as three-dimensional small-thickness elements.


1977 ◽  
Vol 44 (4) ◽  
pp. 737-742 ◽  
Author(s):  
B. Downs

Natural frequencies of doubly symmetric cross section, isotropic cantilever beams, based on both Euler and Timoshenko theories, are presented for 36 combinations of linear depth and breadth taper. Results obtained by a new dynamic discretization technique include the first eight frequencies for all geometries and the stress distribution patterns for the first four (six) modes in the case of the wedge. Comparisons are drawn wherever possible with exact solutions and with other numerical results appearing in the literature. The results display outstanding accuracy and demonstrate that it is possible to model with high precision the dynamic behaviour of continuous systems by discretization on to a strictly limited number of degrees of freedom.


Author(s):  
Antonio Carminelli ◽  
Giuseppe Catania

This paper presents a refinement technique for a B2-spline degenerate isoparametric shell finite element model for the analysis of the vibrational behavior of thin and moderately thick-walled structures. Complex structures to be refined are modeled by means of FE B-spline patches assembled with C0 continuity as usual in FE technique. The model refinement was performed by adding, on the domain of the selected patch, a tensorial set of polynomial B-spline functions, defined on local clamped knot vectors, and normalizing all the functions so that the resulting displacement field remain polynomial and continuous overall the domain except on the boundaries of the refined subdomain. A degrees of freedom trasformation, based on the knot-insertion algorthim, is adopted in order to guarantee the C0 continuity of the displacement field on the boundaries of the refined subdomain. Two numerical examples are presented in order to test the proposed approach. The natural frequencies of two structures, computed by means of the proposed modelling technique, are compared with reference results available in the literature or computed by means of reference standard FE models. Strengths and limits of the approach are finally discussed.


1993 ◽  
Vol 60 (1) ◽  
pp. 117-122 ◽  
Author(s):  
John E. Mottershead ◽  
Shao Weixun

Finite element models are based upon known physical characteristics. But there are two main sources of error, namely (i) ill-defined joints and boundary constraints, and (ii) overstiffening due to the application of shape function discretization. It is difficult to correct an ill-defined constraint without simultaneously compensating (to some unknown degree) for discretization overstiffening. A general approach is proposed whereby the measured eigendata from a physical system are altered to resemble the eigendata of a discrete system with identical (but unknown) constraints. With the effects of discretization overstiffening present in both the adjusted measurements and the model it is straightforward to obtain progressively improved estimates of the constraint stiffnesses by using the least-squares method. The proposed approach may be considered to be equivalent to a model reduction scheme. Specific methods are applied to the correction of a stiffness in the joint of a finite element framework model.


Author(s):  
Noman Khandoker ◽  
Monir Takla ◽  
Thomas Ting

Simple spot weld connection models are desirable in huge and complicated finite element models of automotive body-in-white structures which generally contains thousands of spot weld joints. Hence, in this paper six different individual spot weld joint finite element models simplified in terms of their geometric and constitutive representations were developed including the one that is currently used in automotive industries. The stiffness characteristics of these developed models were compared with the experimental results obtained following a simple strategy to design the welded joint based on the desired mode of nugget pull out failure. It was found that the current spot weld modeling practice in automotive industry under predict the maximum joint strength nearly by 50% for different loading conditions. The computational costs incurred by the developed models in different loading conditions were also compared. Hence, a suitable model for spot welded joints is established which is very simple to develop but relatively cheap in terms of computational costs.


Sign in / Sign up

Export Citation Format

Share Document