Modeling Compliant Parallel Robots

Author(s):  
Annika Raatz ◽  
Frank Trauden ◽  
Ju¨rgen Hesselbach

Since long time flexure hinges have been used in high precision devices instead of conventional bearings, e.g. ball or sliding bearings. Due to the natural lack of backlash, friction and slip-stick effects in flexure hinges, the accuracy of positioning or measurement devices can be highly increased. Recent applications for flexure hinges are seen in parallel robots. The integration of flexure hinges in parallel structures is quite simple because all joints, except for the drives, are passive. Since flexure hinges gain their mobility from an elastic and plastic deformation of matter, their kinematic behavior differs from the kinematics of ideal rotational joints. This leads to deviations of the compliant mechanism and its rigid body model. In this paper a kinematic model is proposed which allows for a compensation of the introduced hinge errors. Furthermore the dynamic model of a compliant parallel robot is derived and verified by means of simulation studies. This dynamic model can be used e.g. for model-based robot control algorithms or for the dimensioning of drives for compliant mechanisms.

1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Author(s):  
Andrew J. Nielson ◽  
Larry L. Howell

Abstract This paper uses a familiar classical mechanism, the pantograph, to demonstrate the utility of the pseudo-rigid-body model in the design of compliant mechanisms to replace rigid-link mechanisms, and to illustrate the advantages and limitations of the resulting compliant mechanisms. To demonstrate the increase in design flexibility, three different compliant mechanism configurations were developed for a single corresponding rigid-link mechanism. The rigid-link pantograph consisted of six links and seven joints, while the corresponding compliant mechanisms had no more than two links and three joints (a reduction of at least four links and four joints). A fourth compliant pantograph, corresponding to a rhomboid pantograph, was also designed and tested. The test results showed that the pseudo-rigid-body model predictions were accurate over a large range, and the mechanisms had displacement characteristics of rigid-link mechanisms in that range. The limitations of the compliant mechanisms included reduced range compared to their rigid-link counterparts. Also, the force-deflection characteristics were predicted by the pseudo-rigid-body model, but they did not resemble those for a rigid-link pantograph because of the energy storage in the flexible segments.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


2012 ◽  
Vol 490-495 ◽  
pp. 1104-1108 ◽  
Author(s):  
Ming Cai Shan ◽  
Wei Ming Wang ◽  
Shu Yuan Ma ◽  
Shuang Liu

To increase the stroke of precision positioning system, a novel series compliant mechanism is presented which is based on elliptical flexure hinges. Pseudo-rigid-body model and energy method are applied to establish the theoretical model of stiffness and maximum stress, which are critical parameters for the large stroke compliant mechanism. The relationships are analyzed between geometric parameters of the series complaint mechanism, stiffness and maximum stress. According that, the series compliant mechanism is designed with the stroke more than 5mm and stiffness less than 3.2N/mm. The difference is less than 5% between the results of finite element analysis and theoretical model computation, which proves the correctness of the application design.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


2020 ◽  
Vol 17 (6) ◽  
pp. 822-836
Author(s):  
Auday Al-Mayyahi ◽  
Ammar A. Aldair ◽  
Chris Chatwin

Abstract3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications. Thus, robust and stable control is required to deliver high accuracy in comparison to the state of the art. The operation of the mechanism is achieved based on three revolute (3-RRR) joints which are geometrically designed using an open-loop spatial robotic platform. The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints. The main variables in our design are the platform base positions, the geometry of the joint angles, and links of the 3-RRR planar parallel robot. These variables are calculated based on Cayley-Menger determinants and bilateration to determine the final position of the platform when moving and placing objects. Additionally, a proposed fractional order proportional integral derivative (FOPID) is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot. The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller. Furthermore, real-time implementation has been tested to prove that the design performance is practical.


2012 ◽  
Vol 163 ◽  
pp. 111-115 ◽  
Author(s):  
Wen Jing Wang ◽  
Li Ge Zhang ◽  
Shu Sheng Bi

Compliant mechanisms gain at least some of their mobility from the deflection of flexible members rather than from movable joints only. Dynamic effects are very important to improving the design of compliant mechanisms. An investigation on the dynamics and synthesis of the compliant mechanisms is presented. The dynamic model of compliant mechanisms is developed at first. The natural frequency and sensitivity are then studied based on the dynamic model. Finally, optimal design of compliant mechanism is investigated. The experimental study of natural frequency is performed. The comparison between the experiment results and the theoretical results verifies the validity of the experiment system and theoretical model.


Sign in / Sign up

Export Citation Format

Share Document