Application of Smart Materials for Noise and Vibration of Hydraulic Systems

Author(s):  
Amin M. Motlagh ◽  
Mohammad H. Elahinia ◽  
Mohammad Abuhaiba ◽  
Walter W. Olson

As market demands vehicles with higher performance, lower fuel consumption, and less emission, hybrid vehicles receive increasing attention. Hybrid technologies have been developed for both passenger and heavy-duty vehicles. Hydraulic hybrid is a technology that is specifically suitable for heavy SUVs and trucks. Despite beneficial aspects of hydraulic systems in reducing the fuel consumption and increasing the launch acceleration for these vehicles, hydraulic vibration and noise is barrier in commercializing this technology. Many studies have been performed on noise and vibration problems of hydraulic systems and many solutions have been proposed. This paper, after introducing the hydraulic hybrid vehicle technology and conventional hydraulic systems in vehicles, reviews the state of the art of the solutions developed for hydraulic noise and vibration. The focus is on the sources of hydraulic noise and vibration. Different approaches for reducing the noise and vibration in hydraulic systems have been reviewed with an emphasis on the application of smart materials. These existing solutions are examined and evaluated for mitigating noise and vibration in hydraulic hybrid vehicles.

2008 ◽  
Vol 15 (2) ◽  
pp. 193-204 ◽  
Author(s):  
The M. Nguyen ◽  
Mohammad H. Elahinia

In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV) have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV) can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR) technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.


Author(s):  
The M. Nguyen ◽  
Mohammad H. Elahinia

This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHV). The hybrid subsystem can potentially improve the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. High pressure hydraulic fluid “assists” the engine in the initial acceleration period. Noise and vibration are an issue with these systems due to the variable hydraulic loads that are applied to the regenerative hybrid element. This study looks into the possibility of reducing the transmitted noise and vibration to the vehicle’s chassis by using smart magnetorheological (MR) dampers. MR dampers utilize MR fluid which is made of pure iron particles suspended in a carrier fluid. MR fluids deliver variable yield stress under the effect of a controllable electromagnetic field. To this end, an MR damper is modeled and simulated. In the simulation both shock and vibration loads are considered. The simulation results are compared with the performance of regular elastomer isolators. It is shown that the MR damper can effectively reduce the vibration for different working cycles of the regenerative system.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2290
Author(s):  
Shilei Zhou ◽  
Paul Walker ◽  
Yang Tian ◽  
Cong Thanh Nguyen ◽  
Nong Zhang

This paper compares the energy economy and vertical vibration characteristics of in-wheel drive electric vehicles (IEVs), in-wheel drive electric hydraulic hybrid vehicles (IHVs) and centralized drive electric vehicles (CEVs). The dynamic programming (DP) algorithm is used to explore the optimal energy consumption of each vehicle. The energy economy analysis shows that the IEV consumes more energy than the CEV due to its relatively lower electric motor efficiency, even with fewer driveline components. The IHV consumes much more energy than the IEV and CEV because of the energy loss in the hydraulic driveline. The vertical vibration analysis demonstrates that both IEV and IHV degrade the vehicle driving comfort due to increased unsprung mass. Taking the advantage of high power density of the hydraulic motor, IHV have less unsprung mass when compared with the IEV, which helps to mitigate the vibration problems caused by increased unsprung mass.


Author(s):  
Hyukjoon Kwon ◽  
Monika Ivantysynova

Hydraulic hybrid powertrains, which can be applied to many types of vehicles including cars, have several important advantages over electric hybrids, such as lower costs, higher power density, and more regenerative energy available from braking. There have been various investigations for hydraulic hybrid architectures and there always exists room for improvement in terms of performance and efficiency. In order to achieve improved performance and efficiency, a novel hydraulic hybrid transmission architecture has recently been suggested in Maha Fluid Power Research Center, which is implemented in the platform of 1999 Range Rover. Previous studies of the Maha hydraulic hybrid vehicle (HHV) mainly focused on the optimization of system components and controller. In order to further study and optimize hydraulic hybrid architectures, the thermal behavior has to be considered as well. A few existing thermal studies on other hydraulic systems have mostly focused on steady state characteristics due to the difficulty of simulating the unsteady state conditions. In this paper, a novel approach to thermal modeling of HHV for a novel HHV architecture is presented. The results have been validated with the measured data collected while driving the vehicle. The thermal model utilizes the flow rate and pressure obtained from the hydraulic system model and calculates the system temperature at different locations. In order to capture the rapid transition of the hydraulic system in HHV, a novel simulation scheme considering the flow direction for the control volume inputs is applied in the presented study. In addition, the presented model considers compressible flow in order to improve the accuracy of the model.


Author(s):  
The M. Nguyen ◽  
Mohammad M. Elahinia

In recent decades, many types of hybrid vehicles have been developed to compensate for the limited sources of oil and gas production. Gasoline-electric hybrid technology shows a significant improvement in fuel efficiency for small and medium-sized passenger vehicles. However, that hybrid type is not economically beneficial for larger vehicles due to large, harmful and expensive battery packs. Hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. Other advantages of hydraulic hybrid are the lower cost and environmental friendliness over the electric batteries. The potential achievement in fuel efficiency has been proved in several studies and experiments by different schools, institutes and laboratories. The only problems preventing this hydraulic hybrid technology going to the market are noise and vibration involving with the hydraulic system. This study focuses on using magnetorheological (MR) technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. MR technology has been well-known with automotive applications such as engine mounts, vehicle's main suspension system. In order to study the nature of the problem, structure of a hydraulic hybrid vehicle in series design is analyzed. The operational characteristics of the powertrain are carefully studied, and the vibration data is formulated. This research shows that not only MR elements play an important role in vibration suppression, but also the geometrical configurations of the mounting systems affect the efficiency in noise and vibration isolation. To this end, simulation results are also used to determine the most effective control method for the MR mounts.


Author(s):  
L. Viktor Larsson ◽  
Karl Pettersson ◽  
Petter Krus

Demands for low cost sustainable solutions have increased the use of and interest in complex hydromechanical transmissions for heavy off-road vehicles. In transmissions with multiple modes, an important condition is to maintain the tractive force during the mode shifting event. For hybrid hydromechanical transmissions, with a direct connection to a hydraulic accumulator, the impressed system pressure caused by the hydraulic accumulator has not yet been observed to interfere with this condition. In this paper, a black box model approach is used to modify the hydraulic system after obtaining knowledge regarding how it is affected by a mode shift. A comparative study is carried out where a full vehicle model of a mobile working machine is simulated with two different hydraulic systems. The results show that different system solutions imply different demands on the included components, and that the mode shifting event is not a negligible factor in heavy hydraulic hybrid vehicles.


Author(s):  
Zhekang Du ◽  
Perry Y. Li ◽  
Kai Loon Cheong ◽  
Thomas R. Chase

An approach to control a hydrostatic dynamometer for the Hardware-In-the-Loop (HIL) testing of hybrid vehicles has been developed and experimentally tested. The hydrostatic dynamometer used, which is capable of regeneration, was specifically designed and built in-house to evaluate the fuel economy and control strategy of a hydraulic hybrid vehicle. The control challenge comes from the inertia of the dynamometer being only 3% of that of the actual vehicle so that the dynamometer must apply, in addition to any drag torques, acceleration/deceleration torques related to the difference in inertias. To avoid estimating the acceleration which would be a non-causal operation, a virtual vehicle concept is introduced. The virtual vehicle model generates a reference speed profile which represents the behavior of the actual vehicle if driven on the road. The dynamometer control problem becomes one of enabling the actual vehicle-dyno shaft to track the speed of the virtual vehicle, instead of directly applying a desired torque. A feedback/feedforward controller was designed based upon an experimentally validated dynamic model of the dynamometer. The approach was successfully tested on a power-split hydraulic hybrid vehicle with acceptable speed and torque tracking performance.


Sign in / Sign up

Export Citation Format

Share Document