Effects of Vessel Configurations on the Damping Effects of an Impact Damper Using an Elasto-Plastic Material

Author(s):  
Tomohiro Ito ◽  
Katsuhisa Fujita ◽  
Naotoshi Okaya

In this study, the damping effects of an impact damper which consists of a vessel and elasto-plastic balls are evaluated. Lead is employed as an elasto-plastic material. Numerical simulations are performed based on a discrete element method. In the numerical simulations, the impact force modeling is modified so as that the elasto-plasticity of the material can be considered. And the rotation of a particle is also considered to simulate the actual particle behaviors at the collision. Frequency responses of the vessel and the damping effect of the damper are evaluated for 2 kinds of impact force models. Also, the effects of vessel dimensions, vessel configurations and the excitation directions are investigated. As a result, the effects of the above mentioned parameters are clarified.

Author(s):  
Tomohiro Ito ◽  
Katsuhisa Fujita ◽  
Naotoshi Okaya

Conventional impact dampers often utilize the steel balls because of its low cost and handling easiness. But the steel-ball impact dampers sometimes collapse or generate very large noise because of large shock at the impact. And as for the design of the impact damper, in the conventional approaches, the analytical modeling for the impact force is based on the contact theory proposed by H. Hertz, in which the restitution coefficient is assumed to be constant, i.e., the dependency on the relative velocity is not taken into consideration. However, some experimental results show that the restitution coefficient depends on the relative velocity at the impact. In this study, the elasto-plastic materials are employed as an impact damper material in order to suppress the large shock for the damper vessel and large impact noise. Therefore, the impact force modeling is modified so as that the elasto-plasticity of the material can be considered. This modeling can also consider the dependency of the restitution coefficient on the relative velocity. An impact damper which composed of a vessel and several particles made of elasto-plastic material such as lead is treated. The frequency response of the damper vessel and the damping effect of the damper are evaluated for the 2 kinds of impact force modeling by numerical simulations. Also, the effects of the particle number and the vessel configuration are evaluated. As a result, the effects of the above mentioned parameters are clarified.


1965 ◽  
Vol 180 (1) ◽  
pp. 895-906 ◽  
Author(s):  
M. M. Sadek

In this investigation a theory is developed relating to the behaviour of the impact damper. The analysis is based on the assumptions that (1) two un-equispaced impacts per cycle occur in the steady state, and (2) the impact force-time curve is of rectangular shape and of infinitesimal duration. Fourier series are used to represent the impact cycle and the differential equation of motion is derived. This is solved using the dynamic equations of impact to determine the boundary conditions. Three equations are developed to determine the variation of impulse, phase angle and vibrational amplitude with the change of the damper parameters. Resonance curves are obtained and the theory is examined experimentally. The regions of validity of the above assumptions are studied both theoretically and experimentally. Non-linearity in the behaviour of this damper is very clear, especially in the range of its optimum behaviour. Two design curves are developed which can be used to determine the damper parameters necessary for a certain amplitude reduction.


1984 ◽  
Vol 51 (1) ◽  
pp. 102-106 ◽  
Author(s):  
M. P. White

A cylindrical missile, assumed to be of a rigid-plastic material strikes a nonyielding target normally and end-on. Above a certain (critical) velocity the nose of the missile disintegrates or spatters, and below that velocity the nose flattens to a mushroom form. The contact force decreases with decreasing velocity during impact but experiences a jump as the critical velocity is passed during slowdown. This paper gives a method of calculating the critical velocity and the contact force as function of time, as well as the time variations of the other parameters of the impact process.


2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2021 ◽  
Vol 54 (7) ◽  
pp. 1-35
Author(s):  
Salonik Resch ◽  
Ulya R. Karpuzcu

Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to extract meaningful results. Different benchmarks test the system in different ways, and each individual metric may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture perspective and provide numerical simulations highlighting challenges that suggest caution.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Jingchen Hu ◽  
Tianshu Wang

This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.


Sign in / Sign up

Export Citation Format

Share Document