Prognostics of Machine Condition Using Energy Based Monitoring Index and Computational Intelligence

Author(s):  
B. Samanta ◽  
C. Nataraj

A procedure is presented for monitoring and prognostics of machine conditions using computational intelligence (CI) techniques. The machine condition is assessed through an energy-based feature, termed as ‘energy index’, extracted from the vibration signals. The progression of the ‘monitoring index’ is predicted using CI techniques, namely, recursive neural network (RNN), adaptive neuro-fuzzy inference system (ANFIS) and support vector regression (SVR). The proposed prediction procedures have been evaluated through benchmark datasets. The prognostic effectiveness of the techniques has been illustrated through vibration dataset of a helicopter drivetrain system gearbox. The performance of SVR was found to be better than RNN and ANFIS for the dataset used. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage/degradation and their progression.

Author(s):  
B. Samanta ◽  
C. Nataraj

A study is presented on applications of computational intelligence (CI) techniques for monitoring and prognostics of machinery conditions. The machine condition is assessed through an energy-based feature, termed as “energy index,” extracted from the vibration signals. The progression of the “monitoring index” is predicted using the CI techniques, namely, recursive neural network (RNN), adaptive neurofuzzy inference system (ANFIS), and support vector regression (SVR). The proposed procedures have been evaluated through benchmark data sets for one-step-ahead prediction. The prognostic effectiveness of the techniques has been illustrated through vibration data set of a helicopter drivetrain system gearbox. The prediction performance of SVR was better than RNN and ANFIS. The improved performance of SVR can be attributed to its inherently better generalization capability. The training time of SVR was substantially higher than RNN and ANFIS. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage or degradation, and their progression.


2018 ◽  
Vol 29 (1) ◽  
pp. 924-940 ◽  
Author(s):  
Ahmed A. Ewees ◽  
Mohamed Abd Elaziz

Abstract This paper presents an alternative method for predicting biochar yields from biomass thermochemical processes. As biochar is considered a renewable and sustainable energy source, it has received more attention. Several methods have been presented to predict biochar, such as neural network (NN) and least square support vector machine (LS-SVM). However, each of them has its own drawbacks, such as getting stuck in a local optimum, which occurs in NN, and lack of uncertainty and time complexity, as in LS-SVM. Therefore, this paper avoids this limitation by using a hybrid method between the adaptive neuro-fuzzy inference system (ANFIS) and gray wolf optimization (GWO) algorithm. The proposed method is called ANFIS-GWO, which consists of two stages. In the first stage, GWO is used to learn the parameters of ANFIS using the training set. Meanwhile, in the second stage, the testing set is used to evaluate the performance of the proposed ANFIS-GWO method. Three experiments were performed to assess the performance of the proposed method. The first experiment used a set of UCI (University of California, Irvine) benchmark datasets to evaluate the effectiveness of ANFIS-GWO. The aim of the second experiment was to evaluate the performance of the proposed ANFIS-GWO method to predict biochar yield from manure pyrolysis. The third experiment aimed to estimate the values of input parameters of pyrolysis that maximize biochar production. The obtained results were compared to those of other methods, such as ANFIS using gradient descent, practical swarm optimization, genetic algorithm, whale optimization algorithm, sine-cosine algorithm, and LS-SVM. The results of the ANFIS-GWO method were >35% of the standard ANFIS and also better than those of other methods.


Author(s):  
He Dai ◽  
Shilong Wang ◽  
Xin Xiong ◽  
Baocang Zhou ◽  
Shouli Sun ◽  
...  

Thermal errors are one of the most significant factors that influence the machining precision of machine tools. For large-sized gear grinding machine tools, thermal errors of beds, columns and rotary tables are decreased by their huge heat capacity. However, different from machine tools of normal sizes, thermal errors increase with greater power in motorised spindles. Thermal error compensation is generally considered as a relatively effective, convenient and cost-efficient approach in thermal error control and reduction. This article proposes two thermal error prediction models for motorised spindles based on an adaptive neuro-fuzzy inference system and support vector machine, respectively. In the adaptive neuro-fuzzy inference system–based model, the temperature values are divided into different groups using subtractive clustering. A hybrid learning scheme is adopted to adjust membership functions so as to learn from the input data. In the particle swarm optimisation support vector machine–based model, particle swarm optimisation is used to optimise the hyperparameters of the established model. Thermal balance experiments are conducted on a large-sized computer numerical control gear grinding machine tool to establish the prediction models. Comparative results show that the adaptive neuro-fuzzy inference system model has higher prediction accuracy (with residual errors within ±2.5 μm in the radial direction and ±3 μm in the axial direction) than the support vector machine model.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Amevi Acakpovi ◽  
Alfred Tettey Ternor ◽  
Nana Yaw Asabere ◽  
Patrick Adjei ◽  
Abdul-Shakud Iddrisu

This paper is concerned with the reliable prediction of electricity demands using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The need for electricity demand prediction is fundamental and vital for power resource planning and monitoring. A dataset of electricity demands covering the period of 2003 to 2018 was collected from the Electricity Distribution Company of Ghana, covering three urban areas namely Mallam, Achimota, and Ga East, all in Ghana. The dataset was divided into two parts: one part covering a period of 0 to 500 hours was used for training of the ANFIS algorithm while the second part was used for validation. Three scenarios were considered for the simulation exercise that was done with the MATLAB software. Scenario one considered four inputs sampled data, scenario two considered an additional input making it 5, and scenario 3 was similar to scenario 1 with the exception of the number of membership functions that increased from 2 to 3. The performance of the ANFIS algorithm was assessed by comparing its predictions with other three forecast models namely Support Vector Regression (SVR), Least Square Support Vector Machine (LS-SVM), and Auto-Regressive Integrated Moving Average (ARIMA). Findings revealed that the ANFIS algorithm can perform the prediction accurately, the ANFIS algorithm converges faster with an increase in the data used for training, and increasing the membership function resulted in overfitting of data which adversely affected the RMSE values. Comparison of the ANFIS results to other previously used methods of predicting electricity demands including SVR, LS-SVM, and ARIMA revealed that there is merit to the potentials of the ANFIS algorithm for improved predictive accuracy while relying on a quality data for training and reliable setting of tuning parameters.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 943 ◽  
Author(s):  
Sadegh Arefnezhad ◽  
Sajjad Samiee ◽  
Arno Eichberger ◽  
Ali Nahvi

This paper presents a novel feature selection method to design a non-invasive driver drowsiness detection system based on steering wheel data. The proposed feature selector can select the most related features to the drowsiness level to improve the classification accuracy. This method is based on the combination of the filter and wrapper feature selection algorithms using adaptive neuro-fuzzy inference system (ANFIS). In this method firstly, four different filter indexes are applied on extracted features from steering wheel data. After that, output values of each filter index are imported as inputs to a fuzzy inference system to determine the importance degree of each feature and select the most important features. Then, the selected features are imported to a support vector machine (SVM) for binary classification to classify the driving conditions in two classes of drowsy and awake. Finally, the classifier accuracy is exploited to adjust parameters of an adaptive fuzzy system using a particle swarm optimization (PSO) algorithm. The experimental data were collected from about 20.5 h of driving in the simulator. The results show that the drowsiness detection system is working with a high accuracy and also confirm that this method is more accurate than the recent available algorithms.


2017 ◽  
Vol 18 (2) ◽  
pp. 450-459 ◽  
Author(s):  
Abbas Parsaie ◽  
Samad Ememgholizadeh ◽  
Amir Hamzeh Haghiabi ◽  
Amir Moradinejad

Abstract In this paper, the trap efficiency (TE) of retention dams was investigated using laboratory experiments. To map the relation between TE and involved parameters, artificial intelligence (AI) methods including artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were utilized. Results of experiments indicated that the range of TE varies between 30 and 98%; hence, this structure can be recommended to control sediment transport in watershed management plans. Experimental results showed that by increasing the longitudinal slope of streams, TE decreases. This finding was observed for Vf/Vs parameter, as well. By increasing the mean diameter grain size (D50) and specific gravity of sediments (Gs), TE increases. Results of all applied AI models demonstrated that all of them have suitable performance; however, the minimum data dispersivity was observed in SVM outcomes. It is notable that the best performance of transfer, membership and kernel functions were related to tansig, gaussmf and radial basis function (RBF) for ANN, SVM and ANFIS, respectively.


2013 ◽  
Vol 27 (10) ◽  
pp. 3803-3823 ◽  
Author(s):  
Afiq Hipni ◽  
Ahmed El-shafie ◽  
Ali Najah ◽  
Othman Abdul Karim ◽  
Aini Hussain ◽  
...  

Author(s):  
Qikai Wang ◽  
Aiqin Yao ◽  
Manouchehr Shokri ◽  
Adrienn A. Dineva

Henry’s constants for different existing compounds in water have great importance in transfer calculations. Measurement of these constants face different difficulties including high costs of experiment and low accuracy of measurement apparatus. Due to these facts, proposing a low cost and accurate approach becomes highlighted. To this end, adaptive neuro-fuzzy inference system (ANFIS) and least squares support vector machine (LSSVM) have been used as Henry’s constant predictor tools. The molecular structure of compounds has been used as inputs of models. After training the models, the visual and mathematical studies of outputs have been done. The coefficients of determination of LSSVM and ANFIS algorithms are 0.999 and 0.990 respectively. According to the comprehensiveness of databank and accurate prediction of algorithms, it can be concluded that LSSVM and ANFIS algorithms are accurate methods for prediction of Henry’s constant in wide range of chemical structure of compounds in water.


Sign in / Sign up

Export Citation Format

Share Document