Prognostics of Machine Condition Using Energy Based Monitoring Index and Computational Intelligence

Author(s):  
B. Samanta ◽  
C. Nataraj

A study is presented on applications of computational intelligence (CI) techniques for monitoring and prognostics of machinery conditions. The machine condition is assessed through an energy-based feature, termed as “energy index,” extracted from the vibration signals. The progression of the “monitoring index” is predicted using the CI techniques, namely, recursive neural network (RNN), adaptive neurofuzzy inference system (ANFIS), and support vector regression (SVR). The proposed procedures have been evaluated through benchmark data sets for one-step-ahead prediction. The prognostic effectiveness of the techniques has been illustrated through vibration data set of a helicopter drivetrain system gearbox. The prediction performance of SVR was better than RNN and ANFIS. The improved performance of SVR can be attributed to its inherently better generalization capability. The training time of SVR was substantially higher than RNN and ANFIS. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage or degradation, and their progression.

Author(s):  
B. Samanta ◽  
C. Nataraj

A procedure is presented for monitoring and prognostics of machine conditions using computational intelligence (CI) techniques. The machine condition is assessed through an energy-based feature, termed as ‘energy index’, extracted from the vibration signals. The progression of the ‘monitoring index’ is predicted using CI techniques, namely, recursive neural network (RNN), adaptive neuro-fuzzy inference system (ANFIS) and support vector regression (SVR). The proposed prediction procedures have been evaluated through benchmark datasets. The prognostic effectiveness of the techniques has been illustrated through vibration dataset of a helicopter drivetrain system gearbox. The performance of SVR was found to be better than RNN and ANFIS for the dataset used. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage/degradation and their progression.


Author(s):  
Arindam Chaudhuri

Forecasting rice production is a challenging problem in agricultural statistics. The inherent difficulty lies in demand and supply affected by many uncertain factors viz. economic policies, agricultural factors, credit measures, foreign trade etc. which interact in a complex manner. Since last few decades, Statistical techniques are used for developing predictive models to estimate required parameters. Determination of nature of rice production time series data is difficult, expensive, time consuming and involves tedious tests. In this paper, we use Interval Type Fuzzy Auto Regressive Integrated Moving Average (ITnARIMA), Adaptive Neuro Fuzzy Inference System (ANFIS) and Modified Regularized Least Squares Fuzzy Support Vector Regression (MRLSFSVR) for prediction of Productivity Index percent (PI %) of rice production time series data and compare it with traditional Statistical tool of Multiple Regression. The accuracies of ITnARIMA and ANFIS techniques are evaluated as relatively similar. It is found that ANFIS exhibits high performance than ITnARIMA, MRLSFSVR and Multiple Regression for predicting PI %. The performance comparison shows that Computational Intelligence paradigm is a promising tool for minimizing uncertainties in rice production data. Further Computational Intelligence techniques also minimize potential inconsistency of correlations.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nandkumar Wagh ◽  
D. M. Deshpande

Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA) interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP), radial basis function (RBF) neural network, and adaptive neurofuzzy inference system (ANFIS) has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.


Author(s):  
Sajid Hussain ◽  
Hossam A. Gabbar

Multiple premature failures of a gearbox in a wind turbine pose a high risk of increasing the operational and maintenance costs and decreasing the profit margins. Prognostics and health management (PHM) techniques are widely used to assess the current health condition of the gearbox and project it in future to predict premature failures. This paper proposes such techniques for predicting gearbox health condition index extracted from the vibration signals. The progression of the monitoring index is predicted using two different prediction techniques, adaptive neuro-fuzzy inference system (ANFIS) and nonlinear autoregressive model with exogenous inputs (NARX). The proposed prediction techniques are evaluated through sun-spot data-set and applied on vibration based health related monitoring index calculated through psychoacoustic phenomenon. A comparison is given for their prediction accuracy. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating features, the level of damage/degradation, and their progression.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shuai Luo ◽  
Hongwei Liu ◽  
Ershi Qi

PurposeThe purpose of this paper is to recognize and label the faults in wind turbines with a new density-based clustering algorithm, named contour density scanning clustering (CDSC) algorithm.Design/methodology/approachThe algorithm includes four components: (1) computation of neighborhood density, (2) selection of core and noise data, (3) scanning core data and (4) updating clusters. The proposed algorithm considers the relationship between neighborhood data points according to a contour density scanning strategy.FindingsThe first experiment is conducted with artificial data to validate that the proposed CDSC algorithm is suitable for handling data points with arbitrary shapes. The second experiment with industrial gearbox vibration data is carried out to demonstrate that the time complexity and accuracy of the proposed CDSC algorithm in comparison with other conventional clustering algorithms, including k-means, density-based spatial clustering of applications with noise, density peaking clustering, neighborhood grid clustering, support vector clustering, random forest, core fusion-based density peak clustering, AdaBoost and extreme gradient boosting. The third experiment is conducted with an industrial bearing vibration data set to highlight that the CDSC algorithm can automatically track the emerging fault patterns of bearing in wind turbines over time.Originality/valueData points with different densities are clustered using three strategies: direct density reachability, density reachability and density connectivity. A contours density scanning strategy is proposed to determine whether the data points with the same density belong to one cluster. The proposed CDSC algorithm achieves automatically clustering, which means that the trends of the fault pattern could be tracked.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yifan Ying ◽  
Yongxi Jin ◽  
Xianchuan Wang ◽  
Jianshe Ma ◽  
Min Zeng ◽  
...  

Introduction: Hydrogen sulfide (H2S) is a lethal environmental and industrial poison. The mortality rate of occupational acute H2S poisoning reported in China is 23.1% ~ 50%. Due to the huge amount of information on metabolomics changes after body poisoning, it is important to use intelligent algorithms to mine multivariate interactions. Methods: This paper first uses GC-MS metabolomics to detect changes in the urine components of the poisoned group and control rats to form a metabolic data set, and then uses the SVM classification algorithm in machine learning to train the hydrogen sulfide poisoning training data set to obtain a classification recognition model. A batch of rats (n = 15) was randomly selected and exposed to 20 ppm H2S gas for 40 days (twice morning and evening, 1 hour each exposure) to prepare a chronic H2S rat poisoning model. The other rats (n = 15) were exposed to the same volume of air and 0 ppm hydrogen sulfide gas as the control group. The treated urine samples were tested using a GC-MS. Results: The method locates the optimal parameters of SVM, which improves the accuracy of SVM classification to 100%. This paper uses the information gain attribute evaluation method to screen out the top 6 biomarkers that contribute to the predicted category (Glycerol,β-Hydroxybutyric acid, arabinofuranose,Pentitol,L-Tyrosine,L-Proline). Conclusion: The SVM diagnostic model of hydrogen sulfide poisoning constructed in this work has training time and prediction accuracy; it has achieved excellent results and provided an intelligent decision-making method for the diagnosis of hydrogen sulfide poisoning.


Intrusion Detection System observes the network traffic and identifies the attack and also inform the admin to corrective action. Powerful Intrusion Detection system is required for detection to various modern attack. There is need of efficient Intrusion Detection system .The focus of IDS research is the application of machine Learning and Deep Learning techniques. Projected work is combination of Deep Learning Technique in which Non Symmetric Deep Auto Encoder and Machine Learning Algorithm, Support Vector Machine Classifier is used to develop the Model. Stack power of the Non symmetric Deep Auto Encoder and Quickness with exactness of the SVM makes the Model very efficient. This Model not only improves the accuracy value but also improve recall and precision. It also cause the reduction of training time .To evaluate the performance of the Model and do the analysis the special Data set which are used are KDD CUP and NSL KDD Dataset.


2011 ◽  
Vol 216 ◽  
pp. 738-741
Author(s):  
Yue E Chen ◽  
Bai Li Ren

SVM has got very good results in the area of solving the classification, regression and density estimation problem in machine learning, has been successfully applied to practical problems of text recognition, speech classification, but the training time is too long is a big drawback. A new reduction strategy is proposed for training support vector machines. This method is fast in convergence without learning machine’s generalization performance, the results of simulation experiments show the feasibility and effectiveness of that method through this method.


2019 ◽  
Vol 68 (7) ◽  
pp. 573-584 ◽  
Author(s):  
Robabeh Jafari ◽  
Ali Torabian ◽  
Mohammad Ali Ghorbani ◽  
Seyed Ahmad Mirbagheri ◽  
Amir Hessam Hassani

Abstract Aquifers are one of the largest available freshwater resources. In this paper, total dissolved solids (TDS) of the groundwater aquifer in Tabriz plain is estimated by groundwater physicochemical parameters including Na, HCO3, Ca, Mg, and SO4 in the eastern region of Urmia Lake. For this purpose, four soft computing approaches, namely, multilayer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and gene expression programming (GEP) were used to predict TDS for a period of 10 years (2002–2012). Data were collected from the East Azerbaijan Regional Water Organization, which totaled 1,742 samples. In the application, of the whole data set, 70% (1,220 samples) was used for training and 30% (522 samples) for testing. In the following, the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) statistics were used for evaluating the accuracy of the models. According to the results, MLP, ANFIS, SVM, and GEP models could be employed successfully in estimating TDS alterations. A comparison was made between these soft computing approaches that corroborated the superiority of the GEP model over MLP, SVM, and ANFIS models with RMSE = 58.93, R = 0.998, and MAE = 5.21.


Sign in / Sign up

Export Citation Format

Share Document