Application of Fractional Calculus in Reservoir Characterization From Pressure Transient Data in Fractal Reservoir With Phase Redistribution

Author(s):  
Asha S. Mishra

The present paper describes the use of pressure derivative and second derivative of integral of pressure in a fractal reservoir with matrix participation with phase redistribution in a geological environment that are not possible by conventional techniques. The analysis of this type of data in reservoir characterization is known as “inverse problem” and one can obtain information about interwell and vertical permeability distribution in a reservoir. The fractal geometry in a dynamic pressure transient tests data plays a very vital role for heterogeneity characterization. The pressure transient response is analyzed for flow in a connected fracture network and fracture with matrix participation. The computer aided matching technique for both pressure and its derivative by nonlinear regression techniques are used in estimating the reservoir properties from measured drawdown/buildup and falloff pressure data of heterogeneous reservoir. In the present paper the fractional calculus approach has been utilized to solve the diffusivity equation with phase redistribution in fractal reservoir. The pressure solution of the diffusivity is in terms of Laplace space and its analytical inversion is not possible. We have obtained numerically inversion of the problem and the pressure, pressure derivative, integral of pressure and its first and second derivative has been calculated. The permeability estimated from pressure transient test data of a well are in good agreement with the identified the geological model.

SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 186-201 ◽  
Author(s):  
Mei Han ◽  
Gaoming Li ◽  
Jingyi Chen

Summary The pressure-transient well-test data can be used to determine the thickness-weighted average permeability in a multilayer reservoir. Injection- or production-profile logs (layer rates), if available, may be used to further quantify the layer properties. This paper explores the possibility of the use of microseismic data in place of injection-/production-profile logs for layered-reservoir characterization. The microseismic first-arrival times from the perforation-timing shots of the test well to monitor wells can only resolve the average velocity along its wavepath but are more sensitive to the layer (or region) with high wave velocity (low productivity). On the contrary, the pressure-transient data are more sensitive to the properties of the high-productivity (high-permeability) layers. Therefore, these two types of data are complementary in reservoir characterization. In this paper, we assimilate these two types of data by use of the state-of-the-art ensemble-Kalman-filter (EnKF) method. Layered-homogeneous- and layered-heterogeneous-reservoir examples verified the complementary nature of these two types of data. The porosities and permeabilities in the layered reservoir obtained after assimilating both types of data are comparable with assimilating pressure-transient and layer-rate data. EnKF is a stochastic process, and the final results may depend on the initial ensemble because of sampling errors, sample size, and nonlinearity of the problem. In this paper, we generated 10 different ensembles for each example for better uncertainty quantification. The paper shows that assimilating pressure-transient data only will yield biased estimates of layered-reservoir properties, whereas assimilating both pressure and microseismic data improves the reservoir-property estimation and reservoir-prediction capabilities.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. W1-W13 ◽  
Author(s):  
Dengliang Gao

In exploration geology and geophysics, seismic texture is still a developing concept that has not been sufficiently known, although quite a number of different algorithms have been published in the literature. This paper provides a review of the seismic texture concepts and methodologies, focusing on latest developments in seismic amplitude texture analysis, with particular reference to the gray level co-occurrence matrix (GLCM) and the texture model regression (TMR) methods. The GLCM method evaluates spatial arrangements of amplitude samples within an analysis window using a matrix (a two-dimensional histogram) of amplitude co-occurrence. The matrix is then transformed into a suite of texture attributes, such as homogeneity, contrast, and randomness, which provide the basis for seismic facies classification. The TMR method uses a texture model as reference to discriminate among seismic features based on a linear, least-squares regression analysis between the model and the data within an analysis window. By implementing customized texture model schemes, the TMR algorithm has the flexibility to characterize subsurface geology for different purposes. A texture model with a constant phase is effective at enhancing the visibility of seismic structural fabrics, a texture model with a variable phase is helpful for visualizing seismic facies, and a texture model with variable amplitude, frequency, and size is instrumental in calibrating seismic to reservoir properties. Preliminary test case studies in the very recent past have indicated that the latest developments in seismic texture analysis have added to the existing amplitude interpretation theories and methodologies. These and future developments in seismic texture theory and methodologies will hopefully lead to a better understanding of the geologic implications of the seismic texture concept and to an improved geologic interpretation of reflection seismic amplitude.


2021 ◽  
Author(s):  
Hans Christian Walker ◽  
Anton Shchipanov ◽  
Harald Selseng

Abstract The Johan Sverdrup field located on the Norwegian Continental Shelf (NCS) started its production in October 2019. The field is considered as a pivotal development in the view of sustainable long-term production and developments on the NCS as well as creating jobs and revenue. The field is operated with advanced well and reservoir surveillance systems including Permanent Downhole Gauges (PDG), Multi-Phase Flow-Meters (MPFM) and seismic Permanent Reservoir Monitoring (PRM). This provides an exceptional basis for reservoir characterization and permanent monitoring. This study focuses on reservoir characterization to improve evaluations of sand permeability-thickness and fault transmissibility. Permanent monitoring of the reservoir with PDG / MPFM has provided an excellent basis for applying different methods of Pressure Transient Analysis (PTA) including analysis of well interference and time-lapse PTA. Interpretation of pressure transient data is today based on both analytical and numerical reservoir simulations (fit-for-purpose models). In this study, such models of the Johan Sverdrup reservoir regions have been assembled, using geological and PVT data, results of seismic interpretations and laboratory experiments. Uncertainties in these data were used to guide and frame the scope of the study. The interference analysis has confirmed communication between the wells located in the same and different reservoir regions, thus revealing hydraulic communication through faults. Sensitivities using segment reservoir simulations of the interference tests with different number of wells have shown the importance of including all the active wells, otherwise the interpretation may give biased results. The estimates for sand permeability-thickness as well as fault leakage obtained from the interference analysis were further applied in simulations of the production history using the fit-for-purpose reservoir models. The production history contains many pressure transients associated with both flowing and shut-in periods. Time-lapse PTA was focused on extraction and history matching of these pressure transients. The simulations have provided reasonable match of the production history and the time-lapse pressure transients including derivatives. This has confirmed the results of the interference analysis for permeability-thickness and fault leakage used as input for these simulations. Well interference is also the dominating factor driving the pressure transient responses. Drainage area around the wells is quickly established for groups of the wells analyzed due to the extreme permeability of the reservoir. It was possible to match many transient responses with segment models, however mismatch for some wells can be explained by the disregard of wells outside the segments, especially injectors. At the same time, it is a useful indication of communication between the regions. The study has improved reservoir characterization of the Johan Sverdrup field, also contributing to field implementation of combined PTA methods.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 354-364 ◽  
Author(s):  
Larry Lines ◽  
Henry Tan ◽  
Sven Treitel ◽  
John Beck ◽  
Richard Chambers ◽  
...  

In 1992, there was a collaborative effort in reservoir geophysics involving Amoco, Conoco, Schlumberger, and Stanford University in an attempt to delineate variations in reservoir properties of the Grayburg unit in a West Texas [Formula: see text] pilot at North Cowden Field. Our objective was to go beyond traveltime tomography in characterizing reservoir heterogeneity and flow anisotropy. This effort involved a comprehensive set of measurements to do traveltime tomography, to image reflectors, to analyze channel waves for reservoir continuity, to study shear‐wave splitting for borehole stress‐pattern estimation, and to do seismic anisotropy analysis. All these studies were combined with 3-D surface seismic data and with sonic log interpretation. The results are to be validated in the future with cores and engineering data by history matching of primary, water, and [Formula: see text] injection performance. The implementation of these procedures should provide critical information on reservoir heterogeneities and preferential flow direction. Geophysical methods generally indicated a continuous reservoir zone between wells.


2014 ◽  
Vol 17 (02) ◽  
pp. 152-164 ◽  
Author(s):  
M.. Onur ◽  
P.S.. S. Hegeman ◽  
I.M.. M. Gök

Summary This paper presents a new infinite-acting-radial-flow (IARF) analysis procedure for estimating horizontal and vertical permeability solely from pressure-transient data acquired at an observation probe during an interval pressure-transient test (IPTT) conducted with a single-probe, dual-probe, or dual-packer module. The procedure is based on new infinite-acting-radial-flow equations that apply for all inclination angles of the wellbore in a single-layer, 3D anisotropic, homogeneous porous medium. The equations for 2D anisotropic cases are also presented and are derived from the general equations given for the 3D anisotropic case. It is shown that the radial-flow equation presented reduces to Prats' (1970) equation assuming infinite-acting radial flow at an observation point along a vertical wellbore in isotropic or 2D anisotropic formations of finite bed thickness. The applicability of the analysis procedure is demonstrated by considering synthetic and field packer/probe IPTT data. The synthetic IPTT examples include horizontal- and slanted-well cases, but the field IPTT is for a vertical well. The results indicate that the procedure provides reliable estimates of horizontal and vertical permeability solely from observation-probe pressure data during radial flow for vertical, horizontal, and inclined wellbores. Most importantly, the analysis does not require that both spherical and radial flow prevail at the observation probe during the test.


2016 ◽  
Vol 4 (2) ◽  
pp. 28 ◽  
Author(s):  
Sunmonu Ayobami ◽  
Adabanija Adedapo ◽  
Adagunodo Aanuoluwa ◽  
Adeniji Ayokunnu

Hydrocarbon resources have become the most essential commodity contributing to any nation’s growth and development in the recent years. For the past decades now, the quest for hydrocarbon resources has been increasing in an arithmetic rate that its supply can no longer meets the demand for its consumption today. In petroleum industry, seismic and well log analyses play a vital role in oil and gas exploration and formation evaluation. This study is aimed to effectively characterize the reservoirs and analyze the by-passed pay in Philus Field, Niger-Delta, Nigeria in order to look into the economic viability and profitability of the volume of oil in the identified reservoir(s). The faults in the study area trend in NW-SE direction and dip towards the south. Seven reservoirs were mapped on Philus field. A discovery trap and a by-passed (new prospect) trap were mapped out on the field. The petrophysical analysis showed that porosity of Philus field was 0.24. The volumetric analysis showed that the Stock Tank Original Oil in Place of discovery trap (Philus field) ranged from 1.6 to 43.1 Mbbl while that of new prospect trap ranged from 18.1 to 211.3 Mbbl. It is recommended that the oil reserve of Philus field needs to be recalculated.


2021 ◽  
pp. 3570-3586
Author(s):  
Mohanad M. Al-Ghuribawi ◽  
Rasha F. Faisal

     The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital  computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.


2021 ◽  
Author(s):  
Fadzlin Hasani Kasim ◽  
Budi Priyatna Kantaatmadja ◽  
Wan Nur Wan M Zainudin ◽  
Amita Ali ◽  
Hasnol Hady Ismail ◽  
...  

Abstract Predicting the spatial distribution of rock properties is the key to a successful reservoir evaluation for hydrocarbon potential. However, a reservoir with a complex environmental setting (e.g. shallow marine) becomes more challenging to be characterized due to variations of clay, grain size, compaction, cementation, and other diagenetic effects. The assumption of increasing permeability value with an increase of porosity may not be always the case in such an environment. This study aims to investigate factors controlling the porosity and permeability relationships at Lower J Reservoir of J20, J25, and J30, Malay Basin. Porosity permeability values from routine core analysis were plotted accordingly in four different sets which are: lithofacies based, stratigraphic members based, quartz volume-based, and grain-sized based, to investigate the trend in relating porosity and permeability distribution. Based on petrographical studies, the effect of grain sorting, mineral type, and diagenetic event on reservoir properties was investigated and characterized. The clay type and its morphology were analyzed using X-ray Diffractometer (XRD) and Spectral electron microscopy. Results from porosity and permeability cross-plot show that lithofacies type play a significant control on reservoir quality. It shows that most of the S1 and S2 located at top of the plot while lower grade lithofacies of S41, S42, and S43 distributed at the middle and lower zone of the plot. However, there are certain points of best and lower quality lithofacies not located in the theoretical area. The detailed analysis of petrographic studies shows that the diagenetic effect of cementation and clay coating destroys porosity while mineral dissolution improved porosity. A porosity permeability plot based on stratigraphic members showed that J20 points located at the top indicating less compaction effect to reservoir properties. J25 and J30 points were observed randomly distributed located at the middle and bottom zone suggesting that compaction has less effect on both J25 and J30 sands. Lithofacies description that was done by visual analysis through cores only may not correlate-able with rock properties. This is possibly due to the diagenetic effect which controls porosity and permeability cannot visually be seen at the core. By incorporating petrographical analysis results, the relationship between porosity, permeability, and lithofacies can be further improved for better reservoir characterization. The study might change the conventional concept that lower quality lithofacies does not have economic hydrocarbon potential and unlock more hydrocarbon-bearing reserves especially in these types of environmental settings.


Sign in / Sign up

Export Citation Format

Share Document