Control of Constrained Systems Described by Lagrangian DAEs

Author(s):  
Jason P. Frye ◽  
Brian C. Fabien

In this paper, a nonlinear controller design for constrained systems described by Lagrangian differential algebraic equations (DAEs) is presented. The controller design utilizes the structure introduced by the coordinate splitting formulation, a numerical technique used for integration of DAEs. In this structure, the Lagrange multipliers associated with the constraint equations are eliminated, and the equations of motion are transformed into implicit differential equations. Making use of this, a feedback linearizing controller can be chosen for successful motion tracking of the constrained system. Numerical examples demonstrate the controller design can be successfully applied to fully actuated and underactuated systems.

Author(s):  
Patrick S. Heaney ◽  
Gene Hou

This paper describes a numerical technique for simulating the dynamics of constrained systems, which are described generally by differential-algebraic equations. The Projection Method for index reduction of a differential-algebraic equation and a minimal correction procedure are described. This procedure ensures algebraic constraints are satisfied during the numerical integration of the reduced index system of differential equations. Two examples illustrate how the method can be utilized to solve constrained multibody and rotational dynamics problems. The efficiency and accuracy of the proposed index-reduction and minimal correction method are then evaluated.


Author(s):  
Shih-Tin Lin ◽  
Ming-Wen Chen

The dynamic equations of motion of the constrained multibody mechanical system are mixed differential-algebraic equations (DAEs). The numerical solution of the DAE systems solved using ordinary-differential equation (ODE) solvers may suffer from constraint drift phenomenon. To solve this problem, Baumgarte proposed a constraint stabilization method in which a position and velocity terms were added in the second derivative of the constraint equation. Baumgarte’s method is a proportional-derivative (PD) type controller design. In this paper, an Iintegrator controller is included to form a proportional-integral-derivative (PID) controller so that the steady state error of the numerical integration can be reduced. Stability analysis methods in the digital control theory are used to find out the correct choice of the coefficients for the PID controller.


Author(s):  
André Laulusa ◽  
Olivier A. Bauchau

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: The sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential-algebraic equations in the presence of holonomic constraints, are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


1999 ◽  
Vol 123 (2) ◽  
pp. 272-281 ◽  
Author(s):  
B. Fox ◽  
L. S. Jennings ◽  
A. Y. Zomaya

The well known Euler-Lagrange equations of motion for constrained variational problems are derived using the principle of virtual work. These equations are used in the modelling of multibody systems and result in differential-algebraic equations of high index. Here they concern an N-link pendulum, a heavy aircraft towing truck and a heavy off-highway track vehicle. The differential-algebraic equation is cast as an ordinary differential equation through differentiation of the constraint equations. The resulting system is computed using the integration routine LSODAR, the Euler and fourth order Runge-Kutta methods. The difficulty to integrate this system is revealed to be the result of many highly oscillatory forces of large magnitude acting on many bodies simultaneously. Constraint compliance is analyzed for the three different integration methods and the drift of the constraint equations for the three different systems is shown to be influenced by nonlinear contact forces.


Author(s):  
Olivier A. Bauchau ◽  
Andre´ Laulusa

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: the sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential algebraic equations are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. Finally, alternative approaches to dealing with high index differential algebraic equations, based on index reduction techniques, are reviewed and discussed. Constraint violation stabilization techniques that have been developed to control constraint drift are also reviewed. These techniques are used in conjunction with algorithms that do not exactly enforce the constraints. Control theory forms the basis for a number of these methods. Penalty based techniques have also been developed, but the augmented Lagrangian formulation presents a more solid theoretical foundation. In contrast to constraint violation stabilization techniques, constraint violation elimination techniques enforce exact satisfaction of the constraints, at least to machine accuracy. Finally, as the finite element method has gained popularity for the solution of multibody systems, new techniques for the enforcement of constraints has been developed in that framework. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

In this paper, a semi analytical-numerical technique called differential transform method (DTM) is applied to investigate free vibration of nanobeams based on non-local Euler–Bernoulli beam theory. The essential steps of the DTM application include transforming the governing equations of motion into algebraic equations, solving the transformed equations and then applying a process of inverse transformation to obtain accurate mode frequency. All the steps of the DTM are very straightforward, and the application of the DTM to both the equations of motion and the boundary conditions seems to be very involved computationally. Besides all these, the analysis of the convergence of the results shows that DTM solutions converge fast. In this paper, a detailed investigation has been reported and MATLAB code has been developed to analyze the numerical results for different scaling parameters as well as for four types of boundary conditions. Present results are compared with other available results and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document