7-DOF Cable-Driven Humanoid Robotic Arm

Author(s):  
Jun Ding ◽  
Robert L. Williams

The purpose of this paper is to study a 7-DOF humanoid cable-driven robotic arm, implement kinematics and dynamics analysis, present different cable-driven designs and evaluate their merits and drawbacks. Since this is a redundant mechanism, kinematics optimization is used to avoid joint limits, singularities and obstacles. Cable kinematics analysis studies the relationships between cable length and the end-effector pose. This is a design modified from the literature. Several new designs are compared in pseudostatics analysis of the arm and a favorable design is suggested in terms of motion range and the cable tensions. Linear programming is used to optimize cable tensions. Dynamics analysis shows that the energy consumption of a cable-driven arm is much less than that of traditional motor-driven arm. Cable-driven robots have potential benefits but also some limitations.

Author(s):  
Christopher Masuo ◽  
Andrzej Nycz ◽  
Mark W. Noakes ◽  
Jared Bell ◽  
Justin Killian ◽  
...  

Metal Big Area Additive Manufacturing (mBAAM) is a promising approach to large-scale metal additive manufacturing (AM) or 3D printing. The mBAAM system uses an arc-based wire-fed welding robot to build metal parts. A multi-degree-of-freedom robotic arm is known for its extensive range of motion and reliable tool handling. Attaching a torch end-effector to a robotic arm gives it welding capabilities; however, this decreases the motion range and dynamics of the robot. As a result, build volume and printing accuracy are decreased. Additionally, only a portion of time is spent printing in an arc-based process. Maintenance leads to downtime on the system. In a tungsten inert gas (TIG)-based process, the torch electrode wears out over time and must be changed to avoid defective deposition. This paper proposes an approach for a compact torch end-effector to improve the robot’s build volume. This paper also proposes an approach to reducing non-printing process time by designing and implementing a semi-automated electrode changing system.


2020 ◽  
Vol 38 (3A) ◽  
pp. 412-422
Author(s):  
Tahseen F. Abaas ◽  
Ali A. Khleif ◽  
Mohanad Q. Abbood

This paper presents the forward, inverse, and velocity kinematics analysis of a 5 DOF robotic arm. The Denavit-Hartenberg (DH) parameters are used to determination of the forward kinematics while an algebraic solution is used in the inverse kinematics solution to determine the position and orientation of the end effector. Jacobian matrix is used to calculate the velocity kinematics of the robotic arm. The movement of the robotic arm is accomplished using the microcontroller (Arduino Mega2560), which controlling on five servomotors of the robotic arm joints and one servo of the gripper. The position and orientation of the end effector are calculated using MATLAB software depending on the DH parameters. The results indicated the shoulder joint is more effect on the velocity of the robotic arm from the other joints, and the maximum error in the position of the end-effector occurred with the z-axis and minimum error with the y-axis.


Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2759-2775
Author(s):  
Yi Lu ◽  
Zhuohong Dai ◽  
Nijia Ye

SUMMARYA novel hybrid robotic arm with three fingers is proposed for assembly, operation and rescue. It is composed of an upper 3RPS-type parallel manipulator, a lower 3SPR-type parallel manipulator and three fingers. Its dynamics are studied and analyzed systematically. First, the kinematics formulae of the moving links at their mass centers in the hybrid robotic arm with three fingers are established. Second, the formulae for solving the inertial wrench of the moving links at their mass centers are derived. Third, a dynamics formula is established for solving the dynamic active/constrained forces of the hybrid robotic arm and the fingers. Finally, an analytic example is given for solving the kinematics and dynamics of the hybrid robotic arm with three fingers and the analytic solved solutions are verified by a simulation mechanism.


2018 ◽  
Vol 8 (3) ◽  
pp. 464 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Xiaoguang Wang ◽  
Pengzhan Liu

Author(s):  
Bin Wei

Abstract In this paper, a rotational robotic arm is designed, modelled and optimized. The 3D model design and optimization are conducted by using SolidWorks. Forward kinematics are derived so as to determine the position vector of the end effector with respect to the base, and subsequently being able to calculate the angular velocity and torque of each joint. For the goal positioning problem, the PD control law is typically used in industry. It is employed in this application by using virtual torsional springs and frictions to generate the torques and to keep the system stable.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

This paper presents a procedure that determines the dimensions of two constraining links to be added to a three degree-of-freedom spherical parallel manipulator so that it becomes a one degree-of-freedom spherical (8, 10) eight-bar linkage that guides its end-effector through five task poses. The dimensions of the spherical parallel manipulator are unconstrained, which provides the freedom to specify arbitrary base attachment points as well as the opportunity to shape the overall movement of the linkage. Inverse kinematics analysis of the spherical parallel manipulator provides a set of relative poses between all of the links, which are used to formulate the synthesis equations for spherical RR chains connecting any two of these links. The analysis of the resulting spherical eight-bar linkage verifies the movement of the system.


Robotica ◽  
2002 ◽  
Vol 20 (6) ◽  
pp. 625-636 ◽  
Author(s):  
Jin-Liang Chen ◽  
Jing-Sin Liu ◽  
Wan-Chi Lee ◽  
Tzu-Chen Liang

The manipulator with a large degree of redundancy is useful for realizing multiple tasks such as maneuvering the robotic arms in the constrained workspace, e.g. the task of maneuvering the end-effector of the manipulator along a pre-specified path into a window. This paper presents an on-line technique based on a posture generation rule to compute a null-space joint velocity vector in a singularity-robust redundancy resolution method. This rule suggests that the end of each link has to track an implicit trajectory that is indirectly resulted from the constraint imposed on tracking motion of the end-effector. A proper posture can be determined by sequentially optimizing an objective function integrating multiple criteria of the orientation of each link from the end-effector toward the base link as the secondary task for redundancy resolution, by assuming one end of the link is clamped. The criteria flexibly incorporate obstacle avoidance, joint limits, preference of posture in tracking, and connection of posture to realize a compromise between the primary and secondary tasks. Furthermore, computational demanding of the posture is reduced due to the sequential link-by-link computation feature. Simulations show the effectiveness and flexibility of the proposed method in generating proper postures for the collision avoidance and the joint limits as a singularity-robust null-space projection vector in maneuvering redundant robots within constrained workspaces.


2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


Sign in / Sign up

Export Citation Format

Share Document