Experimental and Numerical Investigations of an Untethered, Nonlinear Spherical Buoy in a Wave Tank

Author(s):  
Zach Ballard ◽  
Brian Mann

The horizontal and vertical motions of a spherical buoy, excited by synthetic ocean waves within a wave flume, is numerically and experimentally investigated. First, fluid motion in the wave tank is described using Airy’s theory, and the forces on the buoy are determined using a modified form of Morison’s equation. The system is then studied statically in order to determine the effects of varying system parameters. Numerical simulations then use the governing equations to compare predicted motions with experimentally observed behavior.

Author(s):  
Zach Ballard ◽  
Brian P. Mann

The horizontal and vertical motions of a nonlinear spherical buoy, excited by synthetic ocean waves within a wave flume, is numerically and experimentally investigated. First, fluid motion in the wave tank is described using Airy's theory, and the forces on the buoy are determined using a modified form of Morison's equation. The system is then studied statically in order to determine the effects of varying system parameters. Numerical simulations then use the governing equations to compare predicted motions with experimentally observed behavior. Additionally, a commonly used linear formulation is shown to be insufficient in predicting buoy motion, while the nonlinear formulation presented is shown to be accurate.


2009 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
M. N. Gomes ◽  
C. R. Olinto ◽  
L. A. O. Rocha ◽  
J. A. Souza ◽  
L. A. Isoldi

This paper presents two different numerical methodologies to generate regular gravity waves in a wave tank. We performed numerical simulations of wave generation through the FLUENT® package, using the Volume of Fluid (VOF) multiphase model to reproduce the wave propagation in the tank. Thus it was possible to analyze two methods for generating regular waves that could be used in future work, especially in the study of devices of energy conversion from ocean waves into electrical energy.


2012 ◽  
Vol 204-208 ◽  
pp. 4971-4977
Author(s):  
Ya Mei Lan ◽  
Wen Hua Guo ◽  
Yong Guo Li

The CFD software FLUENT was used as the foundation to develop the numerical wave flume, in which the governing equations are the Reynolds-averaged Navier-Stokes (RANS) equations and the standard k~ε turbulence model. The wave generating and absorbing were introduced into the RANS equations as the source terms using the relaxation approach. A new module of the wave generating and absorbing function, which is suitable for FLUENT based on the volume of fluid method (VOF), was established. Within the numerical wave flume, the reflected waves from the model within the computation domain can be absorbed effectively before second reflection appears due to the wave generating boundary. The computational results of the wave pressures on the bottom of the rectangular slab were validated for the different relative clearance by the experimental data. Good agreements were found.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Jacek Jakubowski ◽  
Przemysław Fiołek

A mine shaft steelwork is a three-dimensional frame that directs the vertical motion of conveyances in mine shafts. Here, we conduct field and numerical investigations on the stiffness and dynamic properties of these structures. Based on the design documentation of the shaft, materials data, and site inspection, the steelwork’s finite element model, featuring material and geometric non-linearities, was developed in Abaqus. Static load tests of steelwork were carried out in an underground mine shaft. Numerical simulations reflecting the load test conditions showed strong agreement with the in situ measurements. The validated numerical model was used to assess the dynamic characteristics of the structure. Dynamic linear and non-linear analyses delivered the natural frequencies, mode shapes, and structural response to dynamic loads. The current practices and regulations regarding shaft steelwork design and maintenance do not account for the stiffness of guide-to-bunton connections and disregard dynamic factors. Our experimental and numerical investigations show that these connections provide considerable stiffness, which leads to the redistribution and reduction in bending moments and increased stiffness of the construction. The results also show a high dynamic amplification factor. The omission of these features implicates an incorrect assessment of the design loads and can lead to over- or under-sized structures and ultimately to shortened design working life or failure.


2018 ◽  
Vol 45 (2) ◽  
pp. 253-278 ◽  
Author(s):  
Meraj Alam ◽  
Bibaswan Dey ◽  
Sekhar Raja

In this article, we present a biphasic mixture theory based mathematical model for the hydrodynamics of interstitial fluid motion and mechanical behavior of the solid phase inside a solid tumor. The tumor tissue considered here is an isolated deformable biological medium. The solid phase of the tumor is constituted by vasculature, tumor cells, and extracellular matrix, which are wet by a physiological extracellular fluid. Since the tumor is deformable in nature, the mass and momentum equations for both the phases are presented. The momentum equations are coupled due to the interaction (or drag) force term. These governing equations reduce to a one-way coupled system under the assumption of infinitesimal deformation of the solid phase. The well-posedness of this model is shown in the weak sense by using the inf-sup (Babuska?Brezzi) condition and Lax?Milgram theorem in 2D and 3D. Further, we discuss a one-dimensional spherical symmetry model and present some results on the stress fields and energy of the system based on ??2 and Sobolev norms. We discuss the so-called phenomena of ?necrosis? inside a solid tumor using the energy of the system.


2013 ◽  
Vol 302 ◽  
pp. 326-331 ◽  
Author(s):  
Zhen Zhong Yuan ◽  
Bhupendra Singh Chauhan ◽  
Hee Chang Lim

Since there has been a rapid progress to understand the dynamics of an offshore floating body under an ocean environment, we undertake to generate the ocean waves in a lab-scale wind-wave flume. The study is aiming to observe and optimize the similar ocean environmental condition as input wave and to reduce the wall reflective wave. Several absorption methods are suggested to optimize the propagate wave by measuring the maximum and minimum of the standing wave envelope. There has been no optimized absorption method, as they highly depend on the wave period and the wave length. One of the methods - two fixed wave gauges measuring two wave heights and one wave phase - is applied in this study. In the present paper various approaches were used to analyze the results using the flume, by position of probes, with absorber and without absorber, different position, condition and angle of the wave absorber, This paper also focuses on the analysis of fundamental equations which describe the separating method of the incident and reflective wave, and finally we confirm that the wave absorber is highly efficient considering all the permutation and combination.From the study it is clear that there is a change in the wave amplitude at the receiving end then the generated end; wave absorber is a strong source to control the energy of the coming wave. With the changing the period of the wave, the reflectance is increasing when the period becomes larger.


2019 ◽  
Vol 75 (1) ◽  
pp. 11-21 ◽  
Author(s):  
T. Fonzin Fozin ◽  
G. D. Leutcho ◽  
A. Tchagna Kouanou ◽  
G. B. Tanekou ◽  
R. Kengne ◽  
...  

AbstractMultistability analysis has received intensive attention in recently, however, its control in systems with more than two coexisting attractors are still to be discovered. This paper reports numerically the multistability control of five disconnected attractors in a self-excited simplified hyperchaotic canonical Chua’s oscillator (hereafter referred to as SHCCO) using a linear augmentation scheme. Such a method is appropriate in the case where system parameters are inaccessible. The five distinct attractors are uncovered through the combination of hysteresis and parallel bifurcation techniques. The effectiveness of the applied control scheme is revealed through the nonlinear dynamical tools including bifurcation diagrams, Lyapunov’s exponent spectrum, phase portraits and a cross section basin of attractions. The results of such numerical investigations revealed that the asymmetric pair of chaotic and periodic attractors which were coexisting with the symmetric periodic one in the SHCCO are progressively annihilated as the coupling parameter is increasing. Monostability is achieved in the system through three main crises. First, the two asymmetric periodic attractors are annihilated through an interior crisis after which only three attractors survive in the system. Then, comes a boundary crisis which leads to the disappearance of the symmetric attractor in the system. Finally, through a symmetry restoring crisis, a unique symmetric attractor is obtained for higher values of the control parameter and the system is now monostable.


2017 ◽  
Vol 372 ◽  
pp. 1-10 ◽  
Author(s):  
Eric Didier ◽  
Paulo R.F. Teixeira ◽  
Maria Graça Neves

This paper presents the validation of active and passive, made by a dissipation beach, numerical absorbing methods implemented in RANS-VOF FLUENT® code for modelling long time series of wave propagation interacting with coastal structures. Verification of both numerical techniques was performed in 2D – wave flume, and 3D – wave tank, this one using a multiple active absorption wave makers. The active absorption wave maker allows maintaining the incident wave generation and the mean water level along the time. Good results were obtained for 2D and 3D applications for active absorption wave maker at the generation boundary and both numerical beach and active absorption at the end of the flume/tank.


Author(s):  
Hamid Alemi Ardakani ◽  
Mohammad Javad Ketabdari

Among the compliant platforms, TLP is a vertically moored structure with excess buoyancy, used for deep water oil exploration. In this structure tethers can be tensioned to such an extent that heave, roll and pitch motions of the platform induced by ocean waves are virtually eliminated. SeaStar is new generation of mini tension leg platforms which is similar to a spar and has favorable response features of a TLP. This paper illustrates the results of experimental work performed on a 1/100 scaled model of SeaStar TLP in a wave flume. The study refers to the induced tension in different tendons of the model and the motion response behaviour of the model on different degrees of freedom under several directional impinging random water waves. The results are presented in the frequency domain and the response amplitude operator for each motion of the platform has been calculated.


Sign in / Sign up

Export Citation Format

Share Document