Dynamic Behavior Analysis of Vehicle Shimmy System With Consideration of Clearance in Steering Linkage Mechanism

Author(s):  
Jian-Wei Lu ◽  
Jia-Yun Xin ◽  
Jongkil Lee ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman

Dynamic behavior of the vehicle shimmy system with consideration of steering linkage clearance was analyzed. Based on nonlinear dynamic theories, a 4-DOF dynamic model of vehicle shimmy system with consideration of steering linkage clearance was presented. In which, the revolute movement pair of steering linkage with clearance between the steering tie rod and tie rod arm was described based on Hertz model. Numerical analysis on the dynamic response of the vehicle shimmy system with clearance was carried out, and the results were presented with phase plane, Poincaré map, and bifurcation diagram. The dynamic behavior of the vehicle shimmy system with clearance is compared with that without clearance, and the influence of the clearance on the dynamic behavior of the system is discussed, which will provide theoretical basis for attenuation of vehicle shimmy.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xiulong Chen ◽  
Shuai Jiang ◽  
Yu Deng ◽  
Qing Wang

In order to understand the nonlinear dynamic behavior of a planar mechanism with clearance, the nonlinear dynamic model of the 2-DOF nine-bar mechanism with a revolute clearance is proposed; the dynamic response, phase diagrams, Poincaré portraits, and largest Lyapunov exponents (LLEs) of mechanism are investigated. The nonlinear dynamic model of 2-DOF nine-bar mechanism containing a revolute clearance is established by using the Lagrange equation. Dynamic response of the slider’s kinematics characteristic, contact force, driving torque, shaft center trajectory, and the penetration depth for 2-DOF nine-bar mechanism are all analyzed. Chaos phenomenon existed in the mechanism has been identified by using the phase diagrams, the Poincaré portraits, and LLEs. The effects of the different clearance sizes, different friction coefficients, and different driving speeds on dynamic behavior are studied. Bifurcation diagrams with changing clearance value, friction coefficient, and driving speed are drawn. The research could provide important technical support and theoretical basis for the further study of the nonlinear dynamics of planar mechanism.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2020 ◽  
Vol 10 (6) ◽  
pp. 2120 ◽  
Author(s):  
Zhi-Xian Liao ◽  
Dan Luo ◽  
Xiao-Shu Luo ◽  
Hai-Sheng Li ◽  
Qin-Qin Xiang ◽  
...  

A photovoltaic grid-connected inverter is a strongly nonlinear system. A model predictive control method can improve control accuracy and dynamic performance. Methods to accurately model and optimize control parameters are key to ensuring the stable operation of a photovoltaic grid-connected inverter. Based on the nonlinear characteristics of photovoltaic arrays and switching devices, we established a nonlinear model of photovoltaic grid-connected inverters using the state space method and solved its model predictive controller. Then, using the phase diagram, folded diagram, and bifurcation diagram methods, we studied the nonlinear dynamic behavior under the influence of control parameters on both fast and slow scales. Finally, we investigated the methods of parameter selection based on the characteristics of nonlinear dynamic behavior. Our research shows that the predictive controller parameters are closely related to the bifurcation and chaos behaviors of the grid-connected photovoltaic inverter. The three-dimensional bifurcation diagram can be used to observe the periodic motion region of the control parameters. After selecting the optimization target, the bifurcation diagram can be used to guide the selection of control parameters for inverter design. The research results can be used to guide the modeling, stability analysis, and optimization design of photovoltaic grid-connected inverters.


Author(s):  
Haidong Yu ◽  
Chunzhang Zhao ◽  
Hao Wang ◽  
Yong Zhao

The load-sharing behavior is important for the gear set actuated by multiple parallel pinions to avoid the excessive wear and fatigue failure. A lumped parameter dynamic model of gear set driven by three pinions simultaneously is established, in which their support stiffness and mounted positions of gear pairs are considered. A load-sharing index is defined as the ratio of the maximal and the minimal transmission loads of three gear pairs. The load-sharing behavior of gear set is numerically investigated with four distributions of three pinions. A corresponding testing device was presented. The load-sharing behavior of gear set with various mounted positions of three pinions was studied experimentally and compared with numerical results. The similar behavior denotes that the load transmission of various gear pairs has close relation with the mounted positions of pinions. Then, the load-sharing behavior of the gear set driven by three pinions is discussed in which the contact ratios and the support stiffness of pinions are considered. The results show that the increase of the contact ratios and the decrease of the support stiffness may worsen the load-sharing behavior of gear set actuated by multiple pinions. Suitable mechanical parameters of gear systems are important for the load transmission and dynamic behavior of multiple gear pairs.


Author(s):  
A. K. Etemad ◽  
A. R. M. Gharabaghi ◽  
M. R. Chenaghlou

The nonlinear dynamic response of jacket-type offshore platform (which has been installed in Persian Gulf) under simultaneously wave and earthquake loads is conducted. The interaction between soil and piles is modeled by Konagai-Nogami model. The structure is modeled by finite element method. The analyses include models with the longitudinal component of earthquake and wave in the same direction and in different directions. The results indicate that when the longitudinal component of earthquake and wave are in the same direction, wave may reduce the response of studied platform and when they are in different directions, in some cases there is an increase in the response of platform.


1975 ◽  
Vol 97 (2) ◽  
pp. 595-602 ◽  
Author(s):  
M. P. Koster

The flexibility of the driving shaft affects the dynamic behavior of a cam mechanism. On the basis of a dynamic model this effect can be determined theoretically. The results of different dynamic models are then compared with test results. The drawing up of rules concerning the design of cam mechanisms makes use of a model which is sufficiently accurate as well as sufficiently simple, so that the dynamic response can be characterized by merely two dimensionless parameters, one for the follower and one for the camshaft.


2019 ◽  
Vol 83 ◽  
pp. 01010
Author(s):  
Xin-Miao Li ◽  
Zhi-Wen Zhu ◽  
Qing-Xin Zhang

A kind of constitutive model of SMA is proposed in this paper, and the nonlinear dynamic response of a SMA gripper under bounded noise is studied. The harmonic driving signals and the random disturbance made up of bounded noise. The dynamic model of the system is established by Hamilton principle. The numerical and experimental results show that there is stochastic resonance in the system; the system’s vibration amplitude reaches the most when the outside excitation is moderate.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Wenhu Zhang ◽  
Sier Deng ◽  
Guoding Chen ◽  
Yongcun Cui

In this paper, the formulas of elastohydrodynamic traction coefficients of four Chinese aviation lubricating oils, namely, 4109, 4106, 4050, and 4010, were obtained by a great number of elastohydrodynamic traction tests. The nonlinear dynamics differential equations of high-speed cylindrical roller bearing were built on the basis of dynamic theory of rolling bearings and solved by Hilber–Hughes–Taylor (HHT) integer algorithm with variable step. The influence of lubricant traction coefficient on cage's nonlinear dynamic behavior was investigated, and Poincaré map was used to analyze the influence of four types of aviation lubricating oils on the nonlinear dynamic response of cage's mass center. The period of nonlinear dynamic response of cage's mass center was used to assess cage's stability. The results of this paper provide the theoretical basis for selection of aviation lubricating oil.


Sign in / Sign up

Export Citation Format

Share Document