A Multi-Aspect Modeling Method for Service Flow Simulation Using Scene Transition Nets (STNs)

Author(s):  
Takeshi Tateyama ◽  
Satoshi Mikoshiba ◽  
Koji Kimita ◽  
Kentaro Watanabe ◽  
Ryosuke Chiba ◽  
...  

Recently, a new academic field, “service engineering” has been very actively investigated. However, there are few effective methods and tools to simulate and evaluate services designed based on the concept of service engineering. In the past, the authors proposed a service flow simulation method using scene transition nets (STN) which is a graphic modeling and simulation method for discrete-continuous hybrid systems. However, this method does not consider how to model and simulate complex service flows including multiple layered, parallel, and interrupted structures and it is difficult to construct STN models of such complex systems using the existing STN concepts. In this paper, the authors propose a new STN modeling method using “multi-aspect STN modeling “ concepts in order to provide easy methods for modeling of such complex services. The experimental results for the modeling and simulation of a nursing service demonstrate the effectiveness of the proposed method.

Author(s):  
Takeshi Tateyama ◽  
Satoshi Mikoshiba ◽  
Yoshiki Shimomura ◽  
Seiichi Kawata

A new academic field, “service engineering” has emerged; it involves active investigation for increasing the productivities of service industries. However, there are only a few effective tools for the simulation and evaluation of complex services that have been designed using concepts from the field of service engineering. To overcome this shortcoming, the authors propose a multi-agent service flow simulation method using scene transition nets (STNs) that is a very useful graphical modeling and simulation method for application to discrete-continuous hybrid systems. This method treats services as complicated multi-agent and hybrid systems similar to manufacturing systems. To obtain realistic values of customer satisfaction, the authors input satisfaction-attribute value (S-AV) functions, which are often used in service engineering in service flow models using STN. This method visualizes discrete flows of services and temporal changes in the values of customer satisfaction and various other variables of service models. The authors present the results of the simulation of an online DVD rental service involving multiple agents to show the effectiveness of the proposed method that uses an STN GUI simulator developed by them.


2011 ◽  
Vol 2011.21 (0) ◽  
pp. 91-96
Author(s):  
Takeshi Tateyama ◽  
Satoshi Mikoshiba ◽  
Kentaro Watanabe ◽  
Ryosuke Chiba ◽  
Yoshiki Shimomura ◽  
...  

2013 ◽  
Vol 79 (798) ◽  
pp. 418-428
Author(s):  
Takeshi TATEYAMA ◽  
Satoshi MIKOSHIBA ◽  
Kentaro WATANABE ◽  
Ryosuke CHIBA ◽  
Yoshiki SHIMOMURA ◽  
...  

Author(s):  
Takeshi Tateyama ◽  
Koji Kimita ◽  
Kentaro Watanabe ◽  
Ryosuke Chiba ◽  
Yoshiki Shimomura

2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


2012 ◽  
Vol 201-202 ◽  
pp. 202-207
Author(s):  
Zhi Hua Li ◽  
Hong Guang Yang ◽  
Jun Yu ◽  
You Ping Gong

There is still lack of effective modeling and simulation method for complex electromechanical coupling system. Modelica is a multi-domain unified modeling language to solve the modeling and simulation problems of the complex and heterogeneous physical systems. Dymola is a Modelica-based modeling and simulation platform for the complex physical systems. In this paper, the dynamics model of the permanent magnet synchronous motor (PMSM)-precision reducer system is established using Lagrange-Maxwell equation. The simulation model of this system is set up with Modelica language. The simulation of the system is realized in Dymola. Results show that the system can respond to good static and dynamic characteristics under a given speed for different loads. The dynamics model of the PMSM-precision reducer system can be further used in system control and optimization. The proposed modeling and simulation method based on Modelica may be commonly applied to other complex electromechanical systems.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 204
Author(s):  
Xiaodong Zhang ◽  
Yiqi Wang ◽  
Bingcun Xu

In the multi-variety and small-quantity manufacturing environment, changeover operation occurs frequently, and cooperative changeover method is often used as a way to shorten the changeover time and balance the workload. However, more workers and tasks will be affected by cooperative changeover. As such, the effectiveness of the cooperative changeover is dependent on other factors, such as the scope of cooperation and the proportion of newly introduced products. For this reason, this paper proposes a hybrid modeling method to support the simulation study of the production team's cooperative changeover strategies under various environments. Firstly, a hybrid simulation modeling method consisting of multi-agent systems and discrete events is introduced. Secondly, according to the scope of cooperation, this paper puts forward four kinds of cooperative changeover strategies. This paper also describes the cooperative line-changing behavior of operators. Finally, based on the changeover strategies, the proposed simulation method is applied to a production cell. Four production scenarios are considered according to the proportion of newly introduced part. The performance of various cooperative strategies in different production scenarios is simulated, and the statistical test results show that the optimal or satisfactory strategy can be determined in each production scenario. Additionally, the effectiveness and practicability of the proposed modeling method are verified.


Sign in / Sign up

Export Citation Format

Share Document