Modeling Geometric Non-Linearities in the Free Vibration of a Planar Beam Flexure With a Tip Mass

Author(s):  
Hamid Moeenfard ◽  
Shorya Awtar

The objective of this work is to create an analytical framework to study the non-linear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton’s principal is utilized to derive the equations governing the non-linear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these non-linear partial differential equations are reduced to two coupled non-linear ordinary differential equations. These equations are solved analytically using combination of the method of multiple time scales and homotopy perturbation analysis. Closed-form, parametric analytical expressions are presented for the time domain response of the beam around and far from its internal resonance state. These analytical results are compared with numerical ones to validate the accuracy of the proposed closed-form model. We expect that the qualitative and quantitative knowledge resulting from this effort will ultimately allow the analysis, optimization, and synthesis of flexure mechanisms for improved dynamic performance.

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Hamid Moeenfard ◽  
Shorya Awtar

The objective of this work is to analytically study the nonlinear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton's principle is utilized to derive the equations governing the nonlinear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these nonlinear partial differential equations are reduced to two coupled nonlinear ordinary differential equations. These equations are solved analytically using the multiple time scales perturbation technique. Parametric analytical expressions are presented for the time domain response of the beam around and far from its internal resonance state. These analytical results are compared with numerical ones to validate the accuracy of the proposed analytical model. Compared with numerical solution methods, the proposed analytical technique shortens the computational time, offers design insights, and provides a broader framework for modeling more complex flexure mechanisms. The qualitative and quantitative knowledge resulting from this effort is expected to enable the analysis, optimization, and synthesis of flexure mechanisms for improved dynamic performance.


2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


2019 ◽  
Vol 26 ◽  
pp. 62-83
Author(s):  
Tunde Abdulkadir Yusuf ◽  
Jacob Abiodun Gbadeyan

In this study the effect of entropy generation on two dimensional magnetohydrodynamic (MHD) flow of a Maxwell fluid over an inclined stretching sheet embedded in a non-Darcian porous medium with velocity slip and convective boundary condition is investigated. Darcy-Forchheimer based model was employed to describe the flow in the porous medium. The non-linear thermal radiation is also taken into account. Similarity transformation is used to convert the non-linear partial differential equations to a system of non-linear ordinary differential equations. The resulting transformed equations are then solved using the Homotopy analysis method (HAM). Influence of various physical parameters on the dimensionless velocity profile, temperature profile and entropy generation are shown graphically and discussed in detail while the effects of these physical parameters on velocity gradient and temperature gradient are aided with the help of Table. Furthermore, comparison of some limiting cases of this model was made with existing results. The results obtained are found to be in good agreement with previously published results. Moreover, increase in local inertial coefficient parameter is found to decrease the entropy generation rate.


Author(s):  
Fengxia Wang ◽  
Anil K. Bajaj

Multiple time scales technique has long been an important method for the analysis of weakly nonlinear systems. In this technique, a set of multiple time scales are introduced that serve as the independent variables. The evolution of state variables at slower time scales is then determined so as to make the expansions for solutions in a perturbation scheme uniform in natural and slower times. Normal form theory has also recently been used to approximate the dynamics of weakly nonlinear systems. This theory provides a way of finding a coordinate system in which the dynamical system takes the “simplest” form. This is achieved by constructing a series of near-identity nonlinear transformations that make the nonlinear systems as simple as possible. The “simplest” differential equations obtained by the normal form theory are topologically equivalent to the original systems. Both methods can be interpreted as nonlinear perturbations of linear differential equations. In this work, the equivalence of these two methods for constructing periodic solutions is proven, and it is explained why some studies have found the results obtained by the two techniques to be inconsistent.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shuying Hao ◽  
Yulun Zhu ◽  
Yuhao Song ◽  
Qichang Zhang ◽  
Jingjing Feng ◽  
...  

The electrostatic force nonlinearity caused by fringe effects of the microscale comb will affect the dynamic performance of the micromechanical vibrating gyroscopes (MVGs). In order to reveal the influence mechanism, a class of four-degree-of-freedom (4-DOF) electrostatically driven MVG is considered. The influence of DC bias voltage and comb spacing on the nonlinearity of electrostatic force and the dynamic response of the MVG by using multiple time scales method and numerical simulation are discussed. The results indicate that the electrostatic force nonlinearity causes the system to show stiffness softening. The softening characteristics of the electrostatic force cause the offset of the resonance frequency and a decrease in sensitivity. Although the electrostatic nonlinearity has a great influence on the dynamic behaviour, its influence can be avoided by the reasonable design of the comb spacing and DC bias voltage. There exists a critical value for comb spacing and DC bias voltage. In this paper, determining the critical values is demonstrated by nonlinear dynamics analysis. The results can be supported by the finite element analysis and numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document