Unbalance Identification in Large Steam Turbo-Generator Unit Using a Model-Based Method

Author(s):  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Steven Chatterton ◽  
Ionel Nistor ◽  
Philippe Voinis ◽  
...  

Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.

Author(s):  
A. Vania ◽  
P. Pennacchi ◽  
S. Chatterton

Diagnostic methods, based on mathematical models, can be used to identify the most common faults and malfunctions of rotating machines by minimizing the error between experimental vibration data and the corresponding theoretical response of the rotor system caused by a specific set of excitations. These techniques allow the severity and location of the fault to be estimated. Moreover, depending on the fault characteristics, model-based prognostic techniques can be used to study appropriate corrective actions that can eliminate the cause of the malfunctions or reduce the machine vibration levels. This paper shows the results of a diagnostic analysis carried out to investigate the cause of the high vibration of the HP-IP steam turbine of a large power unit that occurred, during the runups, when approaching the first balance resonance. The numerical results confirmed the suspect that this high vibration was caused by a shaft bow. Then, the machine model was used also to study and optimize a corrective action that allowed the operating speed to be reached and the shaft bow to be eliminated by means of the turbine heating caused by a load rise. The successful results obtained with the machine maintenance carried out considering the indications provided by the model-based diagnostic and prognostic analyses are shown and discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


Author(s):  
Zhixin Xu ◽  
Ming Wang ◽  
Binyan Song ◽  
WenYu Hou ◽  
Chao Wang

The Fukushima nuclear disaster has raised the importance on the reliability and risk research of the spent fuel pool (SFP), including the risk of internal events, fire, external hazards and so on. From a safety point of view, the low decay heat of the spent fuel assemblies and large water inventory in the SFP has made the accident progress goes very slow, but a large number of fuel assemblies are stored inside the spent fuel pool and without containment above the SFP building, it still has an unignored risk to the safety of the nuclear power plant. In this paper, a standardized approach for performing a holistic and comprehensive evaluation approach of the SFP risk based on the probabilistic safety analysis (PSA) method has been developed, including the Level 1 SFP PSA and Level 2 SFP PSA and external hazard PSA. The research scope of SFP PSA covers internal events, internal flooding, internal fires, external hazards and new risk source-fuel route risk is also included. The research will provide the risk insight of Spent Fuel Pool operation, and can help to make recommendation for the prevention and mitigation of SFP accidents which will be applicable for the SFP configuration risk management.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


Author(s):  
A. Vania ◽  
P. Pennacchi ◽  
S. Chatterton

Model-based methods can be applied to identify the most likely faults that cause the experimental response of a rotating machine. Sometimes, the objective function, to be minimized in the fault identification method, shows multiple sufficiently low values that are associated with different sets of the equivalent excitations by means of which the fault can be modeled. In these cases, the knowledge of the contribution of each normal mode of interest to the vibration predicted at each measurement point can provide useful information to identify the actual fault. In this paper, the capabilities of an original diagnostic strategy that combines the use of common fault identification methods with innovative techniques based on a modal representation of the dynamic behavior of rotating machines is shown. This investigation approach has been successfully validated by means of the analysis of the abnormal vibrations of a large power unit.


Sign in / Sign up

Export Citation Format

Share Document