Design of an Endoscopic Micro Optical Part for Fabrication With Micro Two Shot Injection Moulding

Author(s):  
Luke Said ◽  
Philip Farrugia ◽  
Arif Rochman ◽  
Pierre Vella

Micro two shot injection moulding (μtwo shot IM) is a manufacturing process capable of simultaneously replicating two polymeric parts and assembling them; removing the requirement for costly micro assembly. Endoscopes are used in medical environments to observe areas that are otherwise unobservable. μTwo shot IM has the potential to simultaneously replicate and assemble polymer lenses for endoscope imaging and assembling them to their required housing. In view of this, this paper contributes a case study part for application of μtwo shot injection moulding in the fabrication of an endoscopic micro optical component. This paper covers several aspects involved in the design of such a part. This novel design concept consists of an optical component and a housing component moulded sequentially on top of each other using μtwo shot IM. The lens component consisted of three lenses with a common base moulded as the first shot. The second shot moulded on onto the optical component was the housing component incorporating an external thread for interchangeability. From a material selection exercise it was concluded that cyclic olefin copolymer (COC) shall be used as the optical material and polyoxymethylene (POM) shall be used as the housing material. One major concern in the design of such a part is the deformation of the optical material by the housing material due to softening via heat transfer. Simulations of such a scenario were carried out and it was indicated that the functionality of the optical material shall not be compromised.

Author(s):  
Nabil Mohareb ◽  
Sara Maassarani

Current architecture studios are missing an important phase in the education process, which is constructing the students’ conceptual ideas on a real physical scale. The design-build approach enables the students to test their ideas, theories, material selection, construction methods, environmental constraints, simulation results, level of space functionality and other important aspects when used by real target clients in an existing context. This paper aims to highlight the importance of using the design-build method through discussing a design project case study carried out by the Masters of Architecture design programme students at Beirut Arab University, who have built prototype units for refugees on a 1:1 scale.


2021 ◽  
Author(s):  
Jorge Rodriguez ◽  
Susana Gómez ◽  
Ngoc Tran Dinh ◽  
Giovanni Ortuño ◽  
Narendra Borole

Abstract The paper presents the application of a holistic approach to corrosion prediction that overcomes classical pitfalls in corrosion testing and modelling at high pressure, high temperature and high CO2 conditions. Thermodynamic modelling of field and lab conditions allows for more accurate predictions by a novel CO2/H2S general corrosion model validated by laboratory tests. In the proposed workflow, autoclave tests at high pressure and temperature are designed after modeling corrosion in a rigorous thermodynamic framework including fluid-dynamic modelling; the modeled steps include preparation, gas loading and heating of fluid samples at high CO2 concentration, and high flow velocities. An autoclave setup is proposed and validated to simultaneously test different conditions. Corrosion rates are extrapolated to compute service life of the materials and guide material selection. The results from the model and tests extend the application of selected stainless steel grade beyond the threshold conditions calculated by simplistic models and guidelines. Consideration of fugacities and true aqueous compositions allows for accurate thermodynamic representation of field conditions. Computation by rigorous fluid dynamics of shear stress, multiphase flow and heat transfer effects inside completion geometry lead to a proper interpretation of corrosion mechanisms and models to apply. In the case study used to showcase the workflow, conventional stainless steel is validated for most of the tubing. It is observed that some sections of the system in static condition are not exposed to liquid water, allowing for safe use of carbon steel, while as for other critical parts, more noble materials are deemed necessary. Harsh environments pose a challenge to the application of conventional steel materials. The workflow applied to the case study allows accurate representation and application of materials in its application limit region, allowing for safe use of carbon steel or less noble stainless steels in those areas of the completion where corrosion is limited by multiphase fluid-dynamics, heat transfer or the both. The approximation is validated for real case study under high CO2 content, and is considered also valid in the transportation of higher amounts of CO2, for example, in CCUS activities.


Author(s):  
W Ernst Eder

Students learning design engineering at times need a good example of procedure for novel design engineering. The systematic heuristic-strategic use of a theory to guide the design process – Engineering Design Science – and the methodical design process followed in this case study is only necessary in limited situations. The full procedure should be learned, such that the student can select appropriate parts for other applications. Creativity is usually characterized by a wide search for solutions, especially those that are innovative. The search can be helped by this systematic and methodical approach. This case example is presented to show application of the recommended method, and the expected scope of the output, with emphasis on the stages of conceptualizing. The case follows a novel design problem of a mechanism to open and close the bow thruster covers for the Caravan Stage Barge.


2021 ◽  
Author(s):  
Noorulden Basil ◽  
Hamzah M. Marhoon ◽  
Ahmed R. Ibrahim

Abstract The Novel Jaya Optimization Algorithm (JOA) was utilized in this research to evaluate the efficiency of a new novel design of Autonomous Underwater Vehicle (AUV). The Three Proportional Integral Derivative (PID) controllers were used to obtain the optimum output for the AUV Trajectory, which can be considered as a main side of the research for solving the AUV Performance. The optimization technique has been developed to solving the motion model of the AUV in order to reduce the rotations of trajectory for the AUV 6-DOF Body in the axis’s in x, y and z for the overall positions, velocity... etc., and to execute the optimum output for the dynamic kinematics model based on the Novel Euler-6 DOF AUV Body Equation implemented on MATLAB R2021a Version.


2020 ◽  
Vol 19 (04) ◽  
pp. 675-699
Author(s):  
Abadi Chaimae ◽  
Abadi Asmae ◽  
Manssouri Imad

Nowadays, industries face very strong challenges because of the high competitiveness between them. In fact, they are required to offer products with high quality and minimum cost in the minimum time. Since most of the characteristics and costs of the product and its manufacturing process are fixed in the design phase, this paper is focused on this strategic phase. Indeed, a new integrated product design approach is presented. It considers at the same time design requirements, materials characteristics, manufacturing parameters and the assembly process specifications. The developed approach is quantitative. Actually, the decision making is based on all its steps on objective and subjective indicators. To validate the integrated approach, a case study on the Schrader Robot is developed. This application allows to choose the most appropriate materials, manufacturing processes and assembly solution of its different components.


Energy ◽  
2018 ◽  
Vol 165 ◽  
pp. 1085-1096 ◽  
Author(s):  
Kun Yang ◽  
Neng Zhu ◽  
Chen Chang ◽  
Daquan Wang ◽  
Shan Yang ◽  
...  

Author(s):  
Hyeonik Song ◽  
Katherine Fu

Design-by-analogy (DbA) is an important method for innovation that has gained much attention due to its history of leading to successful and novel design solutions. The method uses a repository of existing design solutions where designers can recognize and retrieve analogical inspirations. Yet, exploring for analogical inspiration has been a laborious task for designers. This work presents a computational methodology that is driven by a topic modeling technique called non-negative matrix factorization (NMF). NMF is widely used in the text mining field for its ability to discover topics within documents based on their semantic content. In the proposed methodology, NMF is performed iteratively to build hierarchical repositories of design solutions, with which designers can explore clusters of analogical stimuli. This methodology has been applied to a repository of mechanical design-related patents, processed to contain only component-, behavior-, or material-based content to test if unique and valuable attribute-based analogical inspiration can be discovered from the different representations of patent data. The hierarchical repositories have been visualized, and a case study has been conducted to test the effectiveness of the analogical retrieval process of the proposed methodology. Overall, this paper demonstrates that the exploration-based computational methodology may provide designers an enhanced control over design repositories to retrieve analogical inspiration for DbA practice.


Sign in / Sign up

Export Citation Format

Share Document