scholarly journals Design, Modeling, and Control of an Autonomous Legged-Wheeled Hybrid Robotic Vehicle with Non-Rigid Joints

2021 ◽  
Vol 11 (13) ◽  
pp. 6116
Author(s):  
Vítor H. Pinto ◽  
Inês N. Soares ◽  
Marco Rocha ◽  
José Lima ◽  
José Gonçalves ◽  
...  

This paper presents a legged-wheeled hybrid robotic vehicle that uses a combination of rigid and non-rigid joints, allowing it to be more impact-tolerant. The robot has four legs, each one with three degrees of freedom. Each leg has two non-rigid rotational joints with completely passive components for damping and accumulation of kinetic energy, one rigid rotational joint, and a driving wheel. Each leg uses three independent DC motors—one for each joint, as well as a fourth one for driving the wheel. The four legs have the same position configuration, except for the upper hip joint. The vehicle was designed to be modular, low-cost, and its parts to be interchangeable. Beyond this, the vehicle has multiple operation modes, including a low-power mode. Across this article, the design, modeling, and control stages are presented, as well as the communication strategy. A prototype platform was built to serve as a test bed, which is described throughout the article. The mechanical design and applied hardware for each leg have been improved, and these changes are described. The mechanical and hardware structure of the complete robot is also presented, as well as the software and communication approaches. Moreover, a realistic simulation is introduced, along with the obtained results.

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 29
Author(s):  
Vítor H. Pinto ◽  
José Gonçalves ◽  
Paulo Costa

This article presents an innovative legged-wheeled system, designed to be applied in a hybrid robotic vehicle’s locomotion system, as its driving member. The proposed system will be capable to combine the advantages of legged and wheeled locomotion systems, having 3DOF connected through a combination of both rigid and non-rigid joints. This configuration provides the vehicle the ability to absorb impacts and selected external disturbances. A state space approach was adopted to control the joints, increasing the system’s stability and adaptability. Throughout this article, the entire design process of this robotic system will be presented, as well as its modeling and control. The proposed system’s design is biologically inspired, having as reference the human leg, resulting in the development of a prototype. The results of the testing process with the proposed prototype are also presented. This system was designed to be modular, low-cost, and to increase the autonomy of typical autonomous legged-wheeled locomotion systems.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Samer Alfayad ◽  
Fethi B. Ouezdou ◽  
Faycal Namoun

This paper deals with the design of a new class of hybrid mechanism dedicated to humanoid robotics application. Since the designing and control of humanoid robots are still open questions, we propose the use of a new class of mechanisms in order to face several challenges that are mainly the compactness and the high power to mass ratio. Human ankle and wrist joints can be considered more compact with the highest power capacity and the lowest weight. The very important role played by these joints during locomotion or manipulation tasks makes their design and control essential to achieve a robust full size humanoid robot. The analysis of all existing humanoid robots shows that classical solutions (serial or parallel) leading to bulky and heavy structures are usually used. To face these drawbacks and get a slender humanoid robot, a novel three degrees of freedom hybrid mechanism achieved with serial and parallel substructures with a minimal number of moving parts is proposed. This hybrid mechanism that is able to achieve pitch, yaw, and roll movements can be actuated either hydraulically or electrically. For the parallel submechanism, the power transmission is achieved, thanks to cables, which allow the alignment of actuators along the shin or the forearm main axes. Hence, the proposed solution fulfills the requirements induced by both geometrical, power transmission, and biomechanics (range of motion) constraints. All stages including kinematic modeling, mechanical design, and experimentation using the HYDROïD humanoid robot’s ankle mechanism are given in order to demonstrate the novelty and the efficiency of the proposed solution.


2015 ◽  
Vol 17 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Juan Francisco Ayala Lozano ◽  
Guillermo Urriolagoitia Sosa ◽  
Beatriz Romero Ángeles ◽  
Christopher René Torres San-Miguel ◽  
Luis Antonio Aguilar-Pérez ◽  
...  

<strong>Título en ingles: Mechanical design of an exoskeleton for upper limb rehabilitation</strong><p><strong>Título corto: Diseño mecánico de un exoesqueleto</strong></p><p><strong>Resumen:</strong> El ritmo de vida actual, tanto sociocultural como tecnológico, ha desembocado en un aumento de enfermedades y padecimientos que afectan las capacidades físico-motrices de los individuos. Esto ha originado el desarrollo de prototipos para auxiliar al paciente a recuperar la movilidad y la fortaleza de las extremidades superiores afectadas. El presente trabajo aborda el diseño de una estructura mecánica de un exoesqueleto con 4 grados de libertad para miembro superior. La cual tiene como principales atributos la capacidad de ajustarse a la antropometría del paciente mexicano (longitud del brazo, extensión del antebrazo, condiciones geométricas de la espalda y altura del paciente). Se aplicó el método <em>BLITZ QFD</em> para obtener el diseño conceptual óptimo y establecer adecuadamente las condiciones de carga de servicio. Por lo que, se definieron 5 casos de estudio cuasi-estáticos e implantaron condiciones para rehabilitación de los pacientes. Asimismo, mediante el Método de Elemento Finito (MEF) se analizaron los esfuerzos y deformaciones a los que la estructura está sometida durante la aplicación de los agentes externos de servicio. Los resultados presentados en éste trabajo exhiben una nueva propuesta para la rehabilitación de pacientes con problemas de movilidad en miembro superior. Donde el equipo propuesto permite la rehabilitación del miembro superior apoyado en 4 grados de libertad (tres grados de libertad en el hombro y uno en el codo), el cual es adecuado para realizar terapias activas y pasivas. Asimismo, es un dispositivo que está al alcance de un mayor porcentaje de la población por su bajo costo y fácil desarrollo en la fabricación.</p><p><strong>Palabras clave:</strong> MEF, Blitz QFD, exoesqueletos, diseño mecánico.</p><p><strong>Abstract</strong>: The pace of modern life, both socio-cultural and technologically, has led to an increase of diseases and conditions that affect the physical-motor capabilities of persons. This increase has originated the development of prototypes to help patients to regain mobility and strength of the affected upper limb. This work, deals with the mechanical structure design of an exoskeleton with 4 degrees freedom for upper limb. Which has the capacity to adjust to the Mexican patient anthropometry (arm length, forearm extension, geometry conditions of the back and the patient’s height) BLITZ QFD method was applied to establish the conceptual design and loading service conditions on the structure.  So, 5 quasi-static cases of study were defined and conditions for patient rehabilitation were subjected. Also by applying the finite element method the structure was analyzed due to service loading. The results presented in this work, show a new method for patient rehabilitation with mobility deficiencies in the upper limb. The proposed new design allows the rehabilitation of the upper limb under 4 degrees of freedom (tree degrees of freedom at shoulder and one at the elbow), which is perfect to perform active and passive therapy. Additionally, it is an equipment of low cost, which can be affordable to almost all the country population.</p><p><strong>Key words:</strong> FEM, Blitz QFD, exoskeletons, mechanical design<strong>.</strong></p><p><strong>Recibido:</strong> agosto 20 de 2014   <strong>Aprobado:</strong> marzo 26 de 2015</p>


2008 ◽  
Vol 20 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Yuji Asai ◽  
◽  
Yasuhiro Chiba ◽  
Keisuke Sakaguchi ◽  
Naoki Bushida ◽  
...  

We propose a simple hopping mechanism using vibration of a two-degrees-of-freedom (2-DOF) system for a fast stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in springs and travels quickly using wheels mounted on its lower body. The trajectories of bodies during hopping change based on mechanical design parameters such as reduced mass of the two bodies, the mass ratio between the upper and lower bodies, and spring constant, and control parameters such as initial contraction of the spring and wire tension. This property allows the robot to quickly and economically climb stairs and land softly without complex control. In this paper, we propose a mathematical model of the robot and investigate required tread length for continuous hopping to climb a flight of stairs. Furthermore, we demonstrate fast stair-climbing and soft landing for a flight of stairs in experiments.


Author(s):  
Zhengru Ren ◽  
Roger Skjetne ◽  
Zhen Gao

This paper deals with a nonlinear model predictive control (NMPC) scheme for a winch servo motor to overcome the sudden peak tension in the lifting wire caused by a lumped-mass payload at the beginning of a lifting off or a lowering operation. The crane-wire-payload system is modeled in 3 degrees of freedom with the Newton-Euler approach. Direct multiple shooting and real-time iteration (RTI) scheme are employed to provide feedback control input to the winch servo. Simulations are implemented with MATLAB and CaSADi toolkit. By well tuning the weighting matrices, the NMPC controller can reduce the snatch loads in the lifting wire and the winch loads simultaneously. A comparative study with a PID controller is conducted to verify its performance.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4461 ◽  
Author(s):  
Weihai Chen ◽  
Zhongyi Li ◽  
Xiang Cui ◽  
Jianbin Zhang ◽  
Shaoping Bai

Compared with conventional exoskeletons with rigid links, cable-driven upper-limb exoskeletons are light weight and have simple structures. However, cable-driven exoskeletons rely heavily on the human skeletal system for support. Kinematic modeling and control thus becomes very challenging due to inaccurate anthropomorphic parameters and flexible attachments. In this paper, the mechanical design of a cable-driven arm rehabilitation exoskeleton is proposed to accommodate human limbs of different sizes and shapes. A novel arm cuff able to adapt to the contours of human upper limbs is designed. This has given rise to an exoskeleton which reduces the uncertainties caused by instabilities between the exoskeleton and the human arm. A kinematic model of the exoskeleton is further developed by considering the inaccuracies of human-arm skeleton kinematics and attachment errors of the exoskeleton. A parameter identification method is used to improve the accuracy of the kinematic model. The developed kinematic model is finally tested with a primary experiment with an exoskeleton prototype.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.


Sign in / Sign up

Export Citation Format

Share Document