Understanding the Effects of Soil Characteristics on Mobility

Author(s):  
Paramsothy Jayakumar ◽  
Dave Mechergui ◽  
Tamer M. Wasfy

The Army’s mission is to develop, integrate, and sustain the right technology solutions for all manned and unmanned ground vehicles, and mobility is a key requirement for all ground vehicles. Mobility focuses on ground vehicles’ capabilities that enable them to be deployable worldwide, operationally mobile in all environments, and protected from symmetrical and asymmetrical threats. In order for military ground vehicles to operate in any combat zone, mobility on off-road terrains should be extensively investigated. Mobility on off-road terrains is poorly understood because of the empirical and semi-empirical methods used in predicting the mobility map. These methods do not capture the soil deformation as well as its non-linear behavior. The discrete element method (DEM) was identified as a high-fidelity method that can capture the deformation of the soil and its non-linear behavior. The DEM method allows to simulate the vehicle on any off-road terrain and to generate an accurate mobility map. In this paper, a simulation study was undertaken to understand the influence of soil characteristics on mobility parameters such as wheel sinkage, wheel slip, vehicle speed, and tractive force. The interaction of the vehicle wheels with soft soil is poorly understood, this study helps understand this interaction. A nominal wheeled vehicle model was built in the DIS/IVRESS software and simulated over different cohesive and non-cohesive soils modeled using DEM. Some characteristics of these soils were varied namely, the soil inter-particle cohesion, the soil inter-particle friction, the soil particle size, and the soil density. The mobility parameters were measured and correlated to the soil characteristics. This study showed that the vehicle speed increased with cohesion, friction, soil density, and particle size, while wheel sinkage and wheel slip decreased with those parameters. The influence of these characteristics combined is more complex; extensive studies of other soil characteristics need to be carried out in the future to understand their effect on vehicle mobility.

2019 ◽  
Vol 14 (7) ◽  
Author(s):  
Tamer M. Wasfy ◽  
Dave Mechergui ◽  
Paramsothy Jayakumar

The Army's mission is to develop, integrate, and sustain the right technology solution for all manned and unmanned ground vehicles, and mobility is a key requirement for all ground vehicles. Mobility focuses on ground vehicles' capabilities that enable them to be deployable worldwide, operationally mobile in all environments, and protected from symmetrical and asymmetrical threats. In order for military ground vehicles to operate in any combat zone, mobility on off-road terrains should be extensively investigated. Mobility on off-road terrains is poorly understood because of the empirical and semi-empirical height-field based methods which are often used for predicting vehicle mobility, such as Bekker–Wong type models. Those methods do not capture the three-dimensional soil deformation/flow as well as the soil's nonlinear behavior. The discrete element method (DEM) in which soil is modeled using discrete particles was identified as a high-fidelity method that can capture the deformation of the soil and its nonlinear behavior. In this paper, a simulation study is undertaken to understand the influence of DEM soil model parameters on vehicle mobility. A typical wheeled vehicle model was built in ivress/dis software and simulated over different cohesive and noncohesive soils modeled using DEM, with a particular emphasis on weak soils (with both low friction angle and low cohesion). Some characteristics of these soils were varied, namely, the interparticle cohesion, the interparticle friction, the particle size, and the particle mass. The mobility measures, including vehicle speed, wheel sinkage, wheel slip, and tractive force were evaluated using the model and correlated to the DEM soil model parameters. This study shows that the vehicle speed increases with cohesion, friction, soil density, and particle size while wheel sinkage, wheel slip, and tractive force decrease with those parameters. The combined influence of those parameters is more complex. Extensive studies of those and other soil parameters need to be carried out in the future to understand their effect on vehicle mobility.


2005 ◽  
Vol 881 ◽  
Author(s):  
M. Elhadrouz ◽  
T. Ben Zineb ◽  
E. Patoor

AbstractA constitutive law for ferroelectric and ferroelastic piezoceramics is implemented in ABAQUS Standard using the subroutine user element. A linear solid element is defined: it is an eight-node hexahedron having the mechanical displacement components and the electric potential as degrees of freedom for each node. The element is formulated for static analysis and it needs the definition of the contribution of this element to the Jacobian (stiffness) and the definition of an array containing the contributions of this element to the right-hand-side vectors of the overall system of equations The subroutine is called for each element that is of a user-defined element type each time element calculations are required. As an example, the element is used for the simulation of a multilayer actuator made of piezoceramics. In this case, the piezoelectric equations are not valid since the electric loading induces non linear phenomena, which are captured through the constitutive law implemented in the user element.


Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarika Singh ◽  
Sandeep K. Arya ◽  
Shelly Singla

AbstractA scheme to suppress nonlinear intermodulation distortion in microwave photonic (MWP) link is proposed by using polarizers to compensate inherent non-linear behavior of dual-electrode Mach-Zehnder modulator (DE-MZM). Insertion losses and extinction ratio have also been considered. Simulation results depict that spurious free dynamic range (SFDR) of proposed link reaches to 130.743 dB.Hz2/3. A suppression of 41 dB in third order intermodulation distortions and an improvement of 15.3 dB is reported when compared with the conventional link. In addition, an electrical spectrum at different polarization angles is extracted and 79^\circ is found to be optimum value of polarization angle.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 850
Author(s):  
Pietro Burrascano ◽  
Matteo Ciuffetti

Ultrasonic techniques are widely used for the detection of defects in solid structures. They are mainly based on estimating the impulse response of the system and most often refer to linear models. High-stress conditions of the structures may reveal non-linear aspects of their behavior caused by even small defects due to ageing or previous severe loading: consequently, models suitable to identify the existence of a non-linear input-output characteristic of the system allow to improve the sensitivity of the detection procedure, making it possible to observe the onset of fatigue-induced cracks and/or defects by highlighting the early stages of their formation. This paper starts from an analysis of the characteristics of a damage index that has proved effective for the early detection of defects based on their non-linear behavior: it is based on the Hammerstein model of the non-linear physical system. The availability of this mathematical model makes it possible to derive from it a number of different global parameters, all of which are suitable for highlighting the onset of defects in the structure under examination, but whose characteristics can be very different from each other. In this work, an original damage index based on the same Hammerstein model is proposed. We report the results of several experiments showing that our proposed damage index has a much higher sensitivity even for small defects. Moreover, extensive tests conducted in the presence of different levels of additive noise show that the new proposed estimator adds to this sensitivity feature a better estimation stability in the presence of additive noise.


1968 ◽  
Vol 27 (3_suppl) ◽  
pp. 1169-1170 ◽  
Author(s):  
Whitman Richards

An illusion analogous to Cornsweet's is used to demonstrate how the non-linear behavior of the visual system can be used to obscure low-frequency gradients. The result is a reversal of brightness—from light to dark—as the visual angle of the display is changed.


2009 ◽  
Vol 10 (S1) ◽  
Author(s):  
Kostis P Michmizos ◽  
Georgios L Tagaris ◽  
Damianos E Sakas ◽  
Konstantina S Nikita
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document