Spiral Tool Path Generation for CNC Machining Using Cloud of Points

Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
S. S. Pande

Abstract This paper presents a new method to generate an adaptive spiral tool path for 3-axis CNC machining of the complex freeform surface directly from its representation in the form of the point cloud. The algorithm first constructs the uniform 2D circular mesh-grid to compute the Z (CL) points by applying the tool inverse offset method (IOM). Adaptive grid refinement is carried out iteratively until the surface form errors converge below the prescribed tolerance limits in both circumferential (forward) and radial (step) directions. Adaptive CL points are further refined to minimize the no. of tool lifts and generate an optimum sequence of machining regions. The optimized CL points are post-processed to generate the final CNC part programs in the ISO format. The part programs generated by our algorithm were extensively tested for various case studies using the commercial CNC simulator. The results were compared with those from the commercial CAM software. Our system was found to generate more efficient tool paths in terms of enhanced productivity, part quality, and reduced memory requirement.

Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


Author(s):  
Hrishikesh Mane ◽  
S. S. Pande

Abstract This paper presents a curvature based adaptive iso-parametric strategy for the efficient machining of free form surfaces on 5-axis CNC machine using the flat end mill tool. One iso-parametric boundary of the surface is selected as the initial tool path. Set of cutter contact (CC) points are chosen adaptively on the initial tool path considering desired profile tolerance. Adjacent iso-parametric tool paths are computed adaptively based on the scallop height constraint unlike the traditional iso-parametric approach. The path topology is post-processed to generate the part program for 5-axis CNC machine in ISO format. The system was rigorously tested for various case studies by comparing the results with the traditional 5-axis iso-parametric tool path strategy, iso-scallop strategy and iso-planar strategy of a commercial software. Our system was found to generate efficient tool paths in terms of part quality, productivity and memory storage compared to the conventional strategies.


Author(s):  
Jinting Xu ◽  
Longkun Xu ◽  
Yuwen Sun ◽  
Yuan-Shin Lee ◽  
Jibin Zhao

Smooth continuous spiral tool paths are preferable for computer numerical control (CNC) machining due to their good kinematic and dynamic characteristics. This paper presents a new method to generate spiral tool paths for the direct three-axis CNC machining of the measured cloud of point. In the proposed method, inspired by the Archimedean spiral passing through the radial lines in a circle, 3D radial curves on the cloud of point are introduced, and how to construct the radial curves on the complex cloud of point is discussed in detail and then a practical and effective radial curve construction method of integrating boundary extraction, region triangulation, mesh mapping, and point projection is proposed. On the basis of the radial curves, the spiral tool path can be generated nicely by interpolating the radial curves using a spiral curve. Besides, the method of identifying and eliminating the overcuts and undercuts in the spiral tool path resulting from the interpolation error is also presented for good surface quality. Finally, several examples are given to validate the proposed method and to show its potential in practical applications when quality parametric models and mesh models are not available.


Author(s):  
Edgar A. Mendoza López ◽  
Hugo I. Medellín Castillo ◽  
Dirk F. de Lange ◽  
Theo Lim

The CNC machining has been one of the most recurrent processes used for finishing NNS components. This paper presents a new method for the generation of tool paths for machining 3D NNS models. The proposed approach comprises two machining stages: rough cut and finish cut, and three types of cutting tools: ball-end mill, flat-end mill and fillet-end mill. The proposed tool path generation algorithm is based on: (1) approximation of the model surfaces by points using slice planes and visibility analysis, (2) accessibility analysis of the tool, (3) approximation error and tolerance evaluation, (4) collision analysis of tool and tool holder. The tools paths generated are exported as a CNC program. The implementation was carried out in C++ using the ACIS® geometric modeling kernel to support the required geometric operations. To prove the effectiveness of the system several models with variable geometric complexity were tested. The results have shown that the proposed system is effective and therefore can be used to generate the tool paths required for finishing 3D NNS components.


Author(s):  
Maho Kumanotani ◽  
Hitoshi Kusino ◽  
Keiichi Nakamoto

Abstract Recently, the demand of complex shape parts has increased in the aircraft and medical industries. In these parts machining, the displacement and vibration of workpiece that strongly affect the machining efficiency are induced due to the heavy change of the unmachined workpiece shape and stiffness during rough machining. However, it is difficult to automatically determine machining parameters of operation planning by using a commercial CAM software because there is a large number of combinations. Therefore, in order to improve the efficiency of complex parts machining, the authors proposed a determination method of workpiece shapes during rough machining based on topology optimization relevant to maximizing static stiffness. On the other hand, tool paths that directly affect the workpiece stiffness are not generated automatically to create the calculated workpiece shapes in the previous study. From these reasons, this study proposes a generation method of tool paths by using design variables obtained through the calculation of topology optimization. The tool paths are simply generated based on design variables and enables to ensure the workpiece stiffness during rough machining because design variables are strongly related to the objective function. By conducting a machining experiment assuming complex parts machining, it is confirmed that the proposed method has a potential to realize efficient rough machining.


2019 ◽  
Vol 796 ◽  
pp. 164-174 ◽  
Author(s):  
Bahman Meyghani ◽  
Mokhtar Awang

Curved surfaces have been widely used in engineering applications such as friction stir welding (FSW), 5 axis CNC machining, and other processes. Therefore, the development of the finite element modelling of the complicated geometries has created a need to determine efficient tool paths. Previous finite element models modelled the single point movement of the tool. However, in industrial applications such as aerospace, mould and die, etc. the movement of the tool is complex. Proper determination of the tool path can lead to substantial savings of the process time, improvement of the workpiece surface quality and the improvement of the tool life, thereby leading to overall cost reduction and higher productivity. This paper presents a new approach for the determination of efficient tool paths in finite element modelling by using ABAQUS® software. VDISP user defined subroutine is used in order to define the complex curved movement of the tool. The results indicate that the method is appropriate for modelling of the tool path, and the tool always has a perpendicular position to the surface. Therefore, the method can be suitable for increasing the application of the finite element modelling in various industries.


2010 ◽  
Vol 102-104 ◽  
pp. 681-685 ◽  
Author(s):  
Hai Qing Du ◽  
Ji Bao Qi

The efficiency of CNC machining is greatly influenced by the tool path. A new hybrid algorithm for tool path optimization in CNC varied-shape grinding is presented in this paper. The algorithm was constructed by adding hill-climbing algorithm to nature genetic algorithm. In the new algorithm, the crossover operator and mutation operator were redesigned to enhance the local search capability and to accelerate convergence. Verification experiment demonstrated that the algorithm can reduce non-cutting movement of tool paths and improve machining efficiency significantly.


Author(s):  
Zezhong C. Chen ◽  
Wei Cai

As sculptured surfaces are widely used in mechanical design, machining sculptured surface parts accurately is highly demanded in industry; however, it is quite challenging to meet their demand. Due to the geometric complexity of these surfaces, the tool-surface geometric mismatch always causes machining errors when the tool cuts along the tool paths. To prevent surface gouging, where the machining error is greater than the part tolerance, state-of-the-art CAM software usually determines cutter contact (CC) points on the tool paths first, and then simulates the machining to check the errors caused by this tool-surface mismatch. If surface gouging occurs, the CC points are adjusted using the CAM software. But this established method is quite time consuming and sometimes ineffective. To overcome these problems, a new system, based on the accurate predictions of machining errors, is proposed in this research paper for the optimization of CC points on the tool paths. First, two established CC point generation methods, the chordal deviation method and the circular arc approximation method, are introduced; and their limitations are addressed. Second, a sensitivity study of the machining errors with respect to the cutting tools is conducted. Then a system implementing the generic, geometric approach to accurate machining-error predictions is proposed to optimize CC points on the tool paths. Finally, this CC point optimization system is applied to two practical parts to demonstrate its advantages over the two established methods. This proposed work provides a profound understanding of the machining errors caused by the tool-surface mismatch and contributes to tool path planning for 3-axis CNC milling of sculptured surface parts.


Author(s):  
Baosu Guo ◽  
Qingjin Peng ◽  
Xiaosheng Cheng ◽  
Ning Dai

Free-form surfaces can be machined continuously with minimum tool retractions and at the high speed by following a spiral tool path. This paper presents an improved planning method of the spiral tool path using eccentric parameters for machining free-form surfaces. The relationship between a 3D machined surface and the 2D circular region is established through the conformal mapping. In order to generate an even path, eccentric parameters are used in 2D parametric circular regions to optimize the path interval. The proposed method produces planar spiral segments as a diagonal curve between every two adjacent parametric tool paths. A 2D spiral tool path is gained by linking spiral segments in sequence. Inverse mapping of the 2D spiral tool path onto the machined surface generates the 3D spiral tool path. The main processes of the proposed method include reducing dimensions of free-form surfaces, calculating the eccentric parametric tool path, and generating the planar diagonal spiral tool path. Some applications are used to verify the proposed methods. The proposed method allows the start point to be arbitrary and generates more even tool paths than the existing methods by introducing the mapping distortion.


Sign in / Sign up

Export Citation Format

Share Document