A Novel Single-Step Unconditionally Stable Numerical Integration Scheme With Tunable Algorithmic Dissipation

Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Pierangelo Masarati

Abstract A novel single-step time integration method is proposed for general dynamic problems. From linear spectral analysis, the new method with optimal parameters has second-order accuracy, unconditional stability, controllable algorithmic dissipation and zero-order overshoot in displacement and velocity. Comparison of the proposed method with several representative implicit methods shows that the new method has higher accuracy than the single-step generalized-α method, and also than the composite P∞-Bathe method when mild algorithmic dissipation is used. Besides, this method is spectrally identical to the linear two-step method, although being easier to use since it does not need additional start-up procedures. Its numerical properties are assessed through numerical examples, and the new method shows competitive performance for both linear and nonlinear problems.

2018 ◽  
Vol 10 (10) ◽  
pp. 1850106 ◽  
Author(s):  
Saeed Mohammadzadeh ◽  
Mehdi Ghassemieh

Sub-stepping time integration methods attempt to march each time step with multiple sub-steps. Generally, for the first sub-step, a single-step method is applied and the following sub-steps are solved using a method that utilizes the data obtained from two or three previous equilibrium points. Despite the robust stability in problems, control of numerical dissipation in sub-stepping schemes is a tough task due to applying different algorithms on a time increment. In order to overcome this insufficiency, a new sub-stepping time integration scheme, which uses two sub-steps in each time increment, is proposed. Newmark and quadratic acceleration methods are applied on the first and second sub-steps, respectively. Both methods utilize constant parameters that enable the control of numerical dissipation in the analysis. For the proposed method, the stability analysis revealed the unconditional stability region for the pertinent parameters. Additionally, the precision investigation disclosed an advantage of the proposed method with the presence of minor period elongation error. Finally, the application of the proposed method is illuminated via several numerical examples. In addition to numerical dissipation control, the proposed method proved to have an outstanding advantage over other methods in solving highly flexible structures more efficiently and more accurately.


1999 ◽  
Author(s):  
Bertrand Tchamwa ◽  
Ted Conway ◽  
Christian Wielgosz

Abstract The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis. The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.


Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Yufeng Xing ◽  
Pierangelo Masarati

AbstractA novel explicit three-sub-step time integration method is proposed. From linear analysis, it is designed to have at least second-order accuracy, tunable stability interval, tunable algorithmic dissipation and no overshooting behaviour. A distinctive feature is that the size of its stability interval can be adjusted to control the properties of the method. With the largest stability interval, the new method has better amplitude accuracy and smaller dispersion error for wave propagation problems, compared with some existing second-order explicit methods, and as the stability interval narrows, it shows improved period accuracy and stronger algorithmic dissipation. By selecting an appropriate stability interval, the proposed method can achieve properties better than or close to existing second-order methods, and by increasing or reducing the stability interval, it can be used with higher efficiency or stronger dissipation. The new method is applied to solve some illustrative wave propagation examples, and its numerical performance is compared with those of several widely used explicit methods.


Author(s):  
Laura Ferrero ◽  
Ugo Icardi

A finite element simulation of impacts on sandwich composites with laminated faces is presented; it is based on a refined multilayered plate model with a high-order zig-zag representation of displacements, which is incorporated through a strain energy updating process. This allows the implementation into existing commercial finite elements codes, preserving their program structure. As customary, the Hertzian law and the Newmark implicit time integration scheme are used for solving the contact problem. The contact radius and the force are computed within each time step by an iterative algorithm which forces the impacted top surface to conform, in the least-squares sense, to the shape of the impactor. Nonlinear strains of von Karman type are used. As appearing by the comparison with experimental results, the present model is able to accurately predict the impact force, the core damage and the damage of face sheets in sandwich composites with foam and or honeycomb core. Moreover, this paper also assesses the accuracy and the range of application of stress based criteria in predicting the onset and evolution of delamination in service. These criteria are widespread by virtue of their low run time and storage costs, although no exhaustive proofs are known weather they are accurate enough for a reasonably wide range of applications. Since where highly iterative solutions are involved (e.g., impact and geometric, or material nonlinear problems) they are the only currently affordable failure models, it appears of primary importance to fill this gap. Aimed to contribute to the knowledge advancement in this field, a comparison is presented with more sophisticate fracture mechanics and progressive delamination models.


Author(s):  
Murat Demiral

Implicit time integration schemes are used to obtain stable and accurate transient solutions of nonlinear problems. Methods that are unconditionally stable in linear analysis are sometimes observed to have convergence problems as in the case of solutions obtained with a trapezoidal method. On the other hand, a composite time integration method employing a trapezoidal rule and a three-point backward rule sequentially in two half steps can be used to obtain accurate results and enhance the stability of the system by means of a numerical damping introduced in the formulation. To have a better understanding of the differences in the numerical implementation of the algorithms of these two methods, a mathematical analysis of dynamic equilibrium equations is performed. Several practical problems are studied to compare the implicit methods.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 161-174
Author(s):  
Taufeeq Ur Rehman Abbasi ◽  
Hui Zheng

Engineering systems for different levels of energy dissipation use internal variable models, which may lead to tremendous problems in accurate analysis. This article aims to provide an alternative direct integration method for the analysis of systems involving an anelastic displacement field model. A new state-space formulation built on an augmented set of anelastic variables for asymmetric systems is developed. Then, a precise time integration method based on state-space matrix formulation is proposed by introducing a Legendre–Gauss quadrature. The new integration method in terms of numerical stability and its implementation is discussed. The effect of sensitivity of the selection of the time-step and computational time on the performance of the new method is investigated by using a multi-degree-of-freedom system. The performance of the new method is also evaluated in terms of both computational accuracy and efficiency at higher degrees of freedom by using a continuum system. It is demonstrated that the computational accuracy and efficiency of the new method on large-scale problems are higher than that of the direct integration linear displacement–velocity method.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ya Gao ◽  
Jin Shi ◽  
Chenxu Lu

The two-step composite time integration scheme is combined with the linear contact relation between the wheel and rail (termed the two-step method) to solve coupled vehicle-track dynamic problems. First, two coupled vehicle-track models with different degrees-of-freedom are constructed, in which a vehicle-track system is modeled as two subsystems and the interaction between the two subsystems is implemented via kinematic constraints. Then, the two-step method is applied in the models to simulate several cases, and the accuracy and efficiency of this method are discussed in comparison with additional methods of the Newmark family. Contact separation can also be simulated using the same scheme without causing spurious oscillations for large integration steps. The results indicate that track irregularities can cause wheels to momentarily lose contact with the track, causing large impacts between the wheels and rail. Additionally, with the increase of the running velocity, contact separation will occur more frequently. The adoption of the two-step integration method can ensure the accuracy of solutions and significantly increase the computational efficiency; moreover, the matrixes representing the model information will not change during the calculation process, so the substructure data exported from commercial finite element software can be directly adopted.


2019 ◽  
Vol 9 (15) ◽  
pp. 3076
Author(s):  
Qinyan Xing ◽  
Qinghao Yang ◽  
Weixuan Wang

This paper presents a step-by-step time integration method for transient solutions of nonlinear structural dynamic problems. Taking the second-order nonlinear dynamic equations as the model problem, this self-starting one-step algorithm is constructed using the Galerkin finite element method (FEM) and Newton–Raphson iteration, in which it is recommended to adopt time elements of degree m = 1,2,3. Based on the mathematical and numerical analysis, it is found that the method can gain a convergence order of 2m for both displacement and velocity results when an ordinary Gauss integral is implemented. Meanwhile, with reduced Gauss integration, the method achieves unconditional stability. Furthermore, a feasible integration scheme with controllable numerical damping has been established by modifying the test function and introducing a special integral rule. Representative numerical examples show that the proposed method performs well in stability with controllable numerical dissipation, and its computational efficiency is superior as well.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xindan Gao ◽  
Craig S. Henriquez ◽  
Wenjun Ying

The bidomain equations have been widely used to model the electrical activity of cardiac tissue. While it is well-known that implicit methods have much better stability than explicit methods, implicit methods usually require the solution of a very large nonlinear system of equations at each timestep which is computationally prohibitive. In this work, we present two fully implicit time integration methods for the bidomain equations: the backward Euler method and a second-order one-step two-stage composite backward differentiation formula (CBDF2) which is an L-stable time integration method. Using the backward Euler method as fundamental building blocks, the CBDF2 scheme is easily implementable. After solving the nonlinear system resulting from application of the above two fully implicit schemes by a nonlinear elimination method, the obtained nonlinear global system has a much smaller size, whose Jacobian is symmetric and possibly positive definite. Thus, the residual equation of the approximate Newton approach for the global system can be efficiently solved by standard optimal solvers. As an alternative, we point out that the above two implicit methods combined with operator splittings can also efficiently solve the bidomain equations. Numerical results show that the CBDF2 scheme is an efficient time integration method while achieving high stability and accuracy.


Sign in / Sign up

Export Citation Format

Share Document