Modified precise direct time integration method for the transient response analysis of viscoelastic systems using an internal variable model

2019 ◽  
Vol 26 (3-4) ◽  
pp. 161-174
Author(s):  
Taufeeq Ur Rehman Abbasi ◽  
Hui Zheng

Engineering systems for different levels of energy dissipation use internal variable models, which may lead to tremendous problems in accurate analysis. This article aims to provide an alternative direct integration method for the analysis of systems involving an anelastic displacement field model. A new state-space formulation built on an augmented set of anelastic variables for asymmetric systems is developed. Then, a precise time integration method based on state-space matrix formulation is proposed by introducing a Legendre–Gauss quadrature. The new integration method in terms of numerical stability and its implementation is discussed. The effect of sensitivity of the selection of the time-step and computational time on the performance of the new method is investigated by using a multi-degree-of-freedom system. The performance of the new method is also evaluated in terms of both computational accuracy and efficiency at higher degrees of freedom by using a continuum system. It is demonstrated that the computational accuracy and efficiency of the new method on large-scale problems are higher than that of the direct integration linear displacement–velocity method.

Author(s):  
Takeshi Fujikawa ◽  
Etsujiro Imanishi

Abstract A method of time integration algorithm is presented for solving stiff vibration and motion problems. It is absolutely stable, numerically dissipative, and much accurate than other dissipative time integration methods. It achieves high-frequency dissipation, while minimizing unwanted low-frequency dissipation. In this method change of acceleration during time step is expressed as quadratic function including some parameters, whose appropriate values are determined through numerical investigation. Two calculation examples are demonstrated to show the usefulness of this method.


Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Yufeng Xing ◽  
Pierangelo Masarati

AbstractA novel explicit three-sub-step time integration method is proposed. From linear analysis, it is designed to have at least second-order accuracy, tunable stability interval, tunable algorithmic dissipation and no overshooting behaviour. A distinctive feature is that the size of its stability interval can be adjusted to control the properties of the method. With the largest stability interval, the new method has better amplitude accuracy and smaller dispersion error for wave propagation problems, compared with some existing second-order explicit methods, and as the stability interval narrows, it shows improved period accuracy and stronger algorithmic dissipation. By selecting an appropriate stability interval, the proposed method can achieve properties better than or close to existing second-order methods, and by increasing or reducing the stability interval, it can be used with higher efficiency or stronger dissipation. The new method is applied to solve some illustrative wave propagation examples, and its numerical performance is compared with those of several widely used explicit methods.


2012 ◽  
Vol 203 ◽  
pp. 432-437
Author(s):  
Jun Jie Zhao ◽  
Yan Zhi Yang

The global integration time step of multi-scale model is subject to local detailed model, resulting in lower computational efficiency. Mixed time integration method uses different integration time-step in different scale model, it can effectively avoid the above problem. Rest on a large-scale water tunnel under construction, in order to achieve the synchronization of the global and the local simulation, the paper establishes multi-scale finite element model of the tunnel, and calculate it by mixed time integration method. The final calculation and analysis show that the algorithm can guarantee the computational accuracy of multi-scale numerical simulation, and can effectively improve the computational efficiency, it can also provide references for related tunnel project.


1999 ◽  
Author(s):  
Bertrand Tchamwa ◽  
Ted Conway ◽  
Christian Wielgosz

Abstract The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis. The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.


2013 ◽  
Vol 13 (03) ◽  
pp. 1250068 ◽  
Author(s):  
SHIH-HSUN YIN

A family of new explicit time-integration method is proposed herein, which inherits the numerical characteristics of any existing implicit Runge–Kutta algorithms for a linear conservative system. Based on an exact derivation of the increment of mechanical energy, the method proposed is demonstrated to be unconditionally stable. Also, the stability condition of the proposed method is derived when applied to solving a nonlinear system. The characteristics of the proposed method are investigated by observing the mechanical-energy time history of a nonlinear conservative system. The numerical results can be explained by the stability condition derived in the nonlinear regime. Finally, the computational accuracy and efficiency between the Newmark time integration method and the proposed explicit method are compared in solving the dynamic response of a couple of linear oscillators.


2018 ◽  
Vol 14 (2) ◽  
pp. 37-49 ◽  
Author(s):  
George Bogdan Nica ◽  
Vasile Calofir ◽  
Ioan Cezar Corâci

Abstract In recent years, the pounding effect during earthquake is a subject of high significance for structural engineers. In this paper, a state space formulation of the equation of motion is used in a MATLAB code. The pounding forces are calculated using nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures subjected by 1940 EL-Centro and 1977 Vrancea N-S recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion in state space form are direct integrated. The time domain is chosen instead of the complex one in order to catch the nonlinear behavior of the structures. The physical nonlinear behavior of the structures is modeled according to the Force Analogy Method. The coupling of the Force Analogy Method with the state space approach conducts to an explicit time integration method. Consequently, the collision is easily checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. A comparison with available data in the literature is presented.


Author(s):  
Jose Escobar ◽  
Ismail Celik ◽  
Donald Ferguson

In reactive flow simulations integration of the stiff species transport equations consumes most of the computational time. Another important aspect of combustion simulation is the need to simulate at least tens of species in order to accurately predict emissions and the related combustion dynamics. Small time scales and systems with tens of species lead to very high computational costs. Classic integration methods such as Euler method are restricted by the smallest characteristic time scale, and explicit Runge-Kutta methods require intermediate predictor corrector steps which make the problem computationally expensive. On the other hand, implicit methods are also computationally expensive due the calculation of the Jacobian. This work presents a strategy to significantly reduce computational time for integration of species transport equations using a new explicit integration scheme called Log-Time Integration Method (LTIM). LTIM is fairly robust and can compete with methods such as the 5th order Runge-Kutta method. Results showed that LTIM applied to the solution of a zero dimensional reactive system which consists of 4 chemical species obtains the solution around 4 times faster than 5th order Runge-Kutta method. LTIM was also applied to the solution of a one dimensional methane-air flame. The chemical reactions were modeled using a reduced chemical mechanism ARM9 that consists of 9 chemical species and 5 global reactions. The solution was carried out for 9 species transport equations along with the energy equation. Governing equations were decoupled into flow and chemical parts and were solved separately using a split formulation. Thermodynamic properties were obtained using NASA format polynomials and transport properties using kinetic-theory formulation. It is shown that the new one dimensional flame code is able to calculate the adiabatic flame temperature of the system and corresponding flame speed for the methane-air flame thus validating its robustness and accuracy.


Author(s):  
Jieyu Ding ◽  
Zhenkuan Pan

An adaptive time integration method is developed for the index-3 differential-algebraic equations (DAEs) of multibody systems to improve the computational efficiency as well as the accuracy of the results. Based on the modified general-α method, the adaptive time integration is presented. At each discrete time interval, the time step size is changed through Richardson extrapolation with definable computation accuracy. A rotary rod slider system is used to validate the presented adaptive time integration. The accuracy and efficiency are determined by the expected order of the accuracy in Richardson extrapolation.


Sign in / Sign up

Export Citation Format

Share Document