Analysis of Planar Multilink Cable Driven Robots Using Internal Routing Scheme

Author(s):  
Vishal Ramadoss ◽  
Darwin Lau ◽  
Dimiter Zlatanov ◽  
Matteo Zoppi

Abstract The multilink cable driven robot (MCDR) is an extension of the cable robots where the moving platform is replaced by a multibody chain. It is typically an open-chain structure with multiple links and complex cable routing. This design introduces the advantages of having a serial kinematic structure and preserves the benefits associated with cable-driven parallel mechanism. To achieve a minimum number of actuating cables while possessing a large workspace region, a novel internal cable routing scheme is proposed. It is shown that by incorporating internal routing with multi-segment cables, any serial chain with n degrees of freedom can be controlled with n + 1 cables. In this work, through studying the kinematics and statics, we demonstrate how internally-routed cable actuation of multilink manipulators have an increased workspace and reduced cable forces to execute trajectories.

Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


Author(s):  
Ziming Chen ◽  
Dongliang Cheng ◽  
Yang Zhang ◽  
Zhiwei Yang ◽  
Jin Zhou

A novel 3-UPU parallel mechanism with two rotational and one translational (2R1T) degrees of freedom (DOFs) is analyzed in this paper. The base and moving platform of this mechanism are always symmetric about a middle symmetry plane. The moving platform can rotate continuously about any axis on the middle symmetry plane, so there exists no parasitic motion during the rotation. Using the kinematic influence coefficient theory and the imaginary mechanism method, the first and second order influence coefficient matrix (namely Jacobian matrix and Hessian matrix) of this mechanism are derived. The relations between the velocity and acceleration of the moving platform and the actuated links are obtained. In order to verify the correctness of the theory, two numerical examples are enumerated and varified by the 3D model simulation. The singularities of this mechanism is discussed and the singular configurations of the mechanism, including one kind of limb singularity and two kinds of platform singularities, are obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Xianwen Kong ◽  
Jingjun Yu ◽  
Duanling Li

This paper deals with a 2-DOF (degrees-of-freedom) 3-4R parallel manipulator (PM) with planar base and platform—a novel PM with multiple operation modes (or disassembly free reconfigurable PM) that can use the minimum number of actuated joints. At first, a set of constraint equations of the 3-4R PM are derived with the orientation of the moving platform represented using a Euler parameter quaternion (also Euler–Rodrigues quaternion) and then solved using the algebraic geometry method. It is found that this 3-4R PM has six 2-DOF operation modes, including the two expected spherical translation mode and sphere-on-sphere rolling mode when the PM was synthesized. The motion characteristics of the moving platform are obtained using the kinematic interpretation of Euler parameter quaternions with certain number of constant zero components, which was presented in a recent paper by the first author of this paper, instead of the eigenspace-based approach in the literature. The transition configurations, which are constraint singular configurations, among different operation modes are also presented. This work provides a solid foundation to the development and control of the 2-DOF 3-4R PM with both 2-DOF spherical translation mode and 2-DOF sphere-on-sphere rolling mode.


2015 ◽  
Vol 6 (1) ◽  
pp. 57-64 ◽  
Author(s):  
B. Li ◽  
Y. M. Li ◽  
X. H. Zhao ◽  
W. M. Ge

Abstract. In this paper, a modified 3-DOF (degrees of freedom) translational parallel mechanism (TPM) three-CRU (C, R, and U represent the cylindrical, revolute, and universal joints, respectively) structure is proposed. The architecture of the TPM is comprised of a moving platform attached to a base through three CRU jointed serial linkages. The prismatic motions of the cylindrical joints are considered to be actively actuated. Kinematics and performance of the TPM are studied systematically. Firstly, the structural characteristics of the mechanism are described, and then some comparisons are made with the existing 3-CRU parallel mechanisms. Although these two 3-CRU parallel mechanisms are both composed of the same CRU limbs, the types of freedoms are completely different due to the different arrangements of limbs. The DOFs of this TPM are analyzed by means of screw theory. Secondly, both the inverse and forward displacements are derived in closed form, and then these two problems are calculated directly in explicit form. Thereafter, the Jacobian matrix of the mechanism is derived, the performances of the mechanism are evaluated based on the conditioning index, and the performance of a 3-CRU TPM changing with the actuator layout angle is investigated. Thirdly, the workspace of the mechanism is obtained based on the forward position analysis, and the reachable workspace volume is derived when the actuator layout angle is changed. Finally, some conclusions are given and the potential applications of the mechanism are pointed out.


2013 ◽  
Vol 284-287 ◽  
pp. 1951-1955 ◽  
Author(s):  
Yu Lei Hou ◽  
Da Xing Zeng ◽  
Yan Bin Duan ◽  
Yong Sheng Zhao

The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some difficulties in kinematics and dynamic analysis, the development of control system, and the trajectory planning. Therefore the research on the decoupled parallel mechanism becomes one of the hot of the mechanism fields. While whether the parallel mechanism can realize decouple is the premise for synthesis and analysis of the parallel mechanism. Based on screw theory, the existence of the three degrees of freedom (3-DoF) rotational fully-decoupled parallel mechanism is distinguished. Then taking the 6-PUS/UPU parallel mechanism as example, the rotation angles of the moving platform are measured, which is verified the impossibility of the 3-DoF rotation decoupling. The contents of this paper should possess theoretical significance for the innovative configuration synthesis and structure design of rotational decoupled parallel mechanism.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Louis-Thomas Schreiber ◽  
Clément Gosselin

This paper presents methods to exploit the redundancy of a kinematically redundant spatial parallel mechanism with three redundant DOFs. The architecture of the mechanism is similar to the well-known Gough–Stewart (GS) platform and it retains its advantages, i.e., the members connecting the base to the moving platform are only subjected to tensile/compressive loads. The kinematic redundancy is exploited to avoid singularities and extend the rotational workspace. The architecture is described and the associated kinematic relationships are presented. Solutions for the inverse kinematics are given, as well as strategies to take into account the limitations of the mechanism such as mechanical interferences and velocity limits of the actuators while controlling the redundant degrees-of-freedom.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 764-776 ◽  
Author(s):  
Sheng Guo ◽  
Wei Ye ◽  
Haibo Qu ◽  
Dan Zhang ◽  
Yuefa Fang

SUMMARYIn this paper, a class of novel four Degrees of Freedom (DOF) non-overconstrained parallel mechanisms with large rotational workspace is presented based on screw theory. First, the conflict between the number of independent constraints applied on the moving platform and the number of kinematic limbs for 4-DOF non-overconstrained parallel mechanism is identified. To solve this conflict, the platform partition method is introduced, and two secondary platforms are employed in each of the parallel mechanisms. Then, the motion requirements of the secondary platforms are analyzed and all the possible kinematic chains are enumerated. The geometrical assembly conditions of all possible secondary limbs are analyzed and some typical non-overconstrained parallel mechanisms are generated. In each of the parallel mechanisms, a planetary gear train is used to connect both of the secondary platforms. The large rotational workspace of the moving platform is obtained due to the relative motion of the two secondary platforms. Finally, the kinematics analysis of a typical parallel mechanism is conducted.


Author(s):  
Shihua Li ◽  
Zhen Huang ◽  
Jianguang Wu

In order to enrich deficient-DOF parallel mechanism models, a novel model of a 3-DOF platform manipulator is presented and establish its inverse kinematics equation. Here, studies instantaneous motions of 3-RRRRR parallel manipulator at initial configuration and general configuration. Find: it has three degrees of freedom at initial configuration and after translated along the X, Y, Z axis. Secondly, the relation is given between every active input (θ1) and moving platform position by using D-H means, the solution is developed for inverse kinematics, numerical example for the position kinematic is presented, the figure of workspace along the Z-axis is drawn finally. The mechanism can be applied to jiggle mechanism.


Sign in / Sign up

Export Citation Format

Share Document