A Parametric Study on the Effects of Reynolds Number on the Topology Optimization of Navier-Stokes Flows

Author(s):  
Joel C. Najmon ◽  
Tong Wu ◽  
Andres Tovar

Abstract Fluid-flow topology optimization (FTO) allows the generation of innovative flow-channel layouts with minimal pressure drop (power dissipation) between inlet and outlet ports in a given design domain. FTO was first explored using Stokes flow with the material in the design domain modeled as a porous medium governed by Darcy’s law. More recently, Navier-Stokes flow has been implemented to consider higher Reynolds numbers. The objective of this work is to demonstrate the effect of the Reynolds number on the FTO results and generate a set of design rules. To this end, a density-based FTO algorithm and an in-house finite element analysis code for incompressible Navier-Stokes flow are developed. The optimization process is updated using the method of moving asymptotes so that the flow’s potential power is maximized. The nonlinear Navier-Stokes equations are solved using a trust region Newton’s method. Sensitivity analysis is carried out using the adjoint method. A parametric study of the underlying parameters of the Reynolds number in two numerical examples shows the effect of the fluid’s dynamic viscosity and velocity on the optimized flow channels. The results show that fluids with the same Reynolds number, but with different dynamic viscosity or velocity values, can generate significantly different flow channels.

1999 ◽  
Vol 121 (1) ◽  
pp. 155-162 ◽  
Author(s):  
James Giuliani ◽  
Kambiz Vafai

In the present study, particle growth on individual fibers within a fibrous medium is examined as flow conditions transition beyond the Stokes flow regime. Employing a numerical model that solves the viscous, incompressible Navier-Stokes equations, the Stokes flow approximation used in past research to describe the velocity field through the fibrous medium is eliminated. Fibers are modeled in a staggered array to eliminate assumptions regarding the effects of neighboring fibers. Results from the numerical model are compared to the limiting theoretical results obtained for individual cylinders and arrays of cylinders. Particle growth is presented as a function of time, angular position around the fiber, and flow Reynolds number. From the range of conditions examined, particles agglomerate into taller and narrower dendrites as Reynolds number is increased, which increases the probability that they will break off as larger agglomerations and, subsequently, substantially reduce the hydraulic conductivity of the porous medium.


1965 ◽  
Vol 61 (1) ◽  
pp. 271-274 ◽  
Author(s):  
K. B Ranger

This paper considers a family of viscous flows closely related to the exact Jeffery-Hamel solution ((l), (2)) of the two-dimensional Navier-Stokes equations, for diverging or converging flow in a channel. It is known that if the walls of the channel intersect at an angle less than π then there is a unique solution of the Navier-Stokes equations in which the streamlines are straight lines issuing from the point of intersection of the walls and the flow is everywhere diverging or everywhere converging. The flow parameters depend on the total fluid mass M emitted at the point of intersection and the angle 2α between the walls. By taking the Reynolds number R = M/ν, where v is the kinematic viscosity, the stream function can be expanded in a power series in R in which the leading term is a Stokes flow. Alternatively the solution can be developed by perturbing the Stokes flow and is one of very few examples known in which a Stokes flow can be regarded as a uniformly valid first approximation everywhere in an infinite fluid region. The class of flows to be considered is a generalization of the Jeffery–Hamel flow by taking the flow region to be finite and bounded by two circular arcs which intersect at an angle less than π At one point of intersection fluid is forced into the region and an equal amount is absorbed out at the other point. It is found to the first order that the flow at the two points of intersection corresponds to the zero Reynolds number limit for diverging and converging flow, respectively. Now since the flow at these points can be developed by perturbing the Stokes flow solution it is reasonable to assume that the zero Reynolds number flow in the entire finite region bounded by the arcs is a Stokes flow since the most likely region in which this approximation becomes invalid is locally at the points of intersection but here the validity of the approximation is ensured. A comparison of the convection terms with the viscous terms verifies that this conclusion is borne out.


2013 ◽  
Vol 479-480 ◽  
pp. 220-224
Author(s):  
Arshad Afzal ◽  
Kwang Yong Kim

A Parametric study of a passive micromixer with convergent-divergent channel walls of sinusoidal variation is conducted numerically using combined Navier-Stokes equations and convection-diffusion model for a Reynolds number range, 10 ≤ Re ≤ 70. Water and ethanol are used as working fluids for mixing analysis. Mixing performance was used to compare different configurations (layout) of the micromixer. In comparison with previously published design, which was based on Dean vortices in the sub-channels, the new configurations offered Dean vortices in the sub-channels and recirculation zones in the recesses of the channel for effective mixing. The proposed configurations are competitive in terms mixing performance and pressure loss. Finally, effect of two geometrical parameters viz. the ratio of throat-width to diameter of circular wall and the ratio of diameter of circular wall to amplitude, on mixing performance was studied over a chosen Reynolds number range.


2007 ◽  
Vol 584 ◽  
pp. 23-43 ◽  
Author(s):  
MORTEN BRØNS ◽  
BO JAKOBSEN ◽  
KRISTINE NISS ◽  
ANDERS V. BISGAARD ◽  
LARS K. VOIGT

For the flow around a circular cylinder, the steady flow changes its topology at a Reynolds number around 6 where the flow separates and a symmetric double separation zone is created. At the bifurcation point, the flow topology is locally degenerate, and by a bifurcation analysis we find all possible streamline patterns which can occur as perturbations of this flow. We show that there is no a priori topological limitation from further assuming that the flow fulfils the steady Navier–Stokes equations or from assuming that a Hopf bifurcation occurs close to the degenerate flow.The steady flow around a circular cylinder experiences a Hopf bifurcation for a Reynolds number about 45–49. Assuming that this Reynolds number is so close to the value where the steady separation occurs that the flow here can be considered a perturbation of the degenerate flow, the topological bifurcation diagram will contain all possible instantaneous streamline patterns in the periodic regime right after the Hopf bifurcation. On the basis of the spatial and temporal symmetry associated with the circular cylinder and the structure of the topological bifurcation diagram, two periodic scenarios of instantaneous streamline patterns are conjectured. We confirm numerically the existence of these scenarios, and find that the first scenario exists only in a narrow range after the Hopf bifurcation whereas the second one persists through the entire range of Re where the flow can be considered two-dimensional. Our results corroborate previous experimental and computational results.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Sign in / Sign up

Export Citation Format

Share Document