A Parametric Study on the Effects of Reynolds Number on the Topology Optimization of Navier-Stokes Flows

2021 ◽  
Author(s):  
Joel Najmon ◽  
Tong Wu ◽  
Andres Tovar
Author(s):  
Joel C. Najmon ◽  
Tong Wu ◽  
Andres Tovar

Abstract Fluid-flow topology optimization (FTO) allows the generation of innovative flow-channel layouts with minimal pressure drop (power dissipation) between inlet and outlet ports in a given design domain. FTO was first explored using Stokes flow with the material in the design domain modeled as a porous medium governed by Darcy’s law. More recently, Navier-Stokes flow has been implemented to consider higher Reynolds numbers. The objective of this work is to demonstrate the effect of the Reynolds number on the FTO results and generate a set of design rules. To this end, a density-based FTO algorithm and an in-house finite element analysis code for incompressible Navier-Stokes flow are developed. The optimization process is updated using the method of moving asymptotes so that the flow’s potential power is maximized. The nonlinear Navier-Stokes equations are solved using a trust region Newton’s method. Sensitivity analysis is carried out using the adjoint method. A parametric study of the underlying parameters of the Reynolds number in two numerical examples shows the effect of the fluid’s dynamic viscosity and velocity on the optimized flow channels. The results show that fluids with the same Reynolds number, but with different dynamic viscosity or velocity values, can generate significantly different flow channels.


2011 ◽  
Vol 230 (17) ◽  
pp. 6688-6708 ◽  
Author(s):  
Yongbo Deng ◽  
Zhenyu Liu ◽  
Ping Zhang ◽  
Yongshun Liu ◽  
Yihui Wu

2013 ◽  
Vol 479-480 ◽  
pp. 220-224
Author(s):  
Arshad Afzal ◽  
Kwang Yong Kim

A Parametric study of a passive micromixer with convergent-divergent channel walls of sinusoidal variation is conducted numerically using combined Navier-Stokes equations and convection-diffusion model for a Reynolds number range, 10 ≤ Re ≤ 70. Water and ethanol are used as working fluids for mixing analysis. Mixing performance was used to compare different configurations (layout) of the micromixer. In comparison with previously published design, which was based on Dean vortices in the sub-channels, the new configurations offered Dean vortices in the sub-channels and recirculation zones in the recesses of the channel for effective mixing. The proposed configurations are competitive in terms mixing performance and pressure loss. Finally, effect of two geometrical parameters viz. the ratio of throat-width to diameter of circular wall and the ratio of diameter of circular wall to amplitude, on mixing performance was studied over a chosen Reynolds number range.


2001 ◽  
Vol 431 ◽  
pp. 347-370 ◽  
Author(s):  
IGOR MEZIĆ

We discuss mixing and transport in three-dimensional, steady, Navier–Stokes flows with the no-slip condition at the boundaries. The advective flux is related to the dynamics of the Navier–Stokes equations and a prediction is made of the scaling of the advective flux with the Reynolds number: the flux is expected to decay as the Reynolds number goes to infinity. This prediction is made via a Melnikov-type calculation together with boundary layer concepts through which the flow is split into an integrable and a small non-integrable part. The rate of decay is related to the details of viscous flow in boundary layers. The Melnikov function is related to the Bernoulli integral of the underlying Euler flow. The effects of molecular diffusivity are discussed and the effective axial diffusivity scaling predicted as a function of Reynolds and Péclet numbers. Using these ideas, we study the mass transport in the wavy vortex flow in the Taylor–Couette apparatus as a particular example. We propose an explanation of the observed non-monotonic behaviour of flux with increasing Reynolds number that was not captured in any of the previous models. It is shown that there is a Reynolds number at which the axial flux in the wavy vortex flow is maximized. At the low range of Reynolds numbers for which the wavy vortex flow is stable the flux increases, while for large Reynolds numbers it decreases. We compare these predictions with the available experimental and numerical data on the wavy vortex flow.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Sign in / Sign up

Export Citation Format

Share Document