A Mirror-Symmetrical XY Compliant Parallel Manipulator With Improved Performances Without Increasing the Footprint

2021 ◽  
Author(s):  
Jiaxiang Zhu ◽  
Guangbo Hao ◽  
Shiyao Li ◽  
Shuwen Yu ◽  
Xianwen Kong

Abstract The design of XY compliant parallel manipulators (CPMs) remains challenging considering the tradeoff between the mirror-symmetry for better constrained undesired rotations and the small footprint, although a significant number of XY CPMs have been reported in extensive applications. This paper presents a new XY CPM using mirror-symmetry without increasing its footprint, mainly aiming to reduce the undesired parasitic rotations of input and output motion stages. The concept of higher degree of stiffness centre symmetry is deployed to tackle the parasitic rotations, leading to a multi-layer compact XY CPM design with each layer being a rotation-symmetrical design. A nonlinear and analytical model of the proposed XY CPM is derived using free body diagrams and the Beam Constrained Model (BCM) to accurately analyse its performance characteristics over a large range of motion. The designed XY CPM is then verified by the nonlinear finite element analysis (FEA) method. Finally, the proposed multi-layer design is comprehensively compared with the well-received single-layer rotation-symmetrical design. It is shown in the new design that the parasitic rotations of input and output stages along with the actuator isolation are significantly reduced and that the out-of-plane-stiffness is also significantly increased.

2009 ◽  
Vol 01 (04) ◽  
pp. 709-736 ◽  
Author(s):  
ZUO-RONG CHEN ◽  
MENG LU ◽  
LIN YE

An analytical permeability model is formulated for multilayer plain woven fabrics based on a network treatment. Both meso-scale flow between fibre tows and micro-scale flow within tows are taken into account, addressing the effects of meso-/micro-structures of fabrics. For a single layer fabric, open channels between adjacent fibre tows and between fibre tows and surface boundaries have a significant effect on in-plane permeability, while out-of-plane permeability is sensitive to open gaps between tows. It is shown that the permeability of multilayer woven fabrics may differ significantly from that of a single layer, depending on the meso-/micro-structures of multilayer fabrics. Two major mechanisms are found to affect the in-plane permeability of multilayer fabrics in opposite ways. As the number of layers increases, the large inter-layer open channels created after laying-up result in an increase in in-plane permeability; on the other hand, reduction of inter-layer open channels due to nesting during a compaction process leads to a decrease in in-plane permeability. In addition, reduction of trans-layer open channels due to inter-layer blocking associated with shifting also greatly reduces the out-of-plane permeability of multilayer fabrics. Predictions from the permeability model offer satisfactory agreement with the experimental data and the predictions based on finite element analysis.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Guangbo Hao ◽  
Xianwen Kong

There is an increasing need for compact large-range XY compliant parallel manipulators (CPMs). This paper deals with a novel large-range XY CPM with enhanced out-of-plane stiffness (LRXYCPMEOS). Unlike most of XY CPMs based on the 4-PP (P: prismatic) decoupled parallel mechanism, the LRXYCPMEOS is obtained from a 4-PP-E (E: planar) decoupled parallel mechanism by replacing each P joint with a planar double multibeam parallelogram module (DMBPM) and the E joint with a spatial double multibeam parallelogram module. Normalized analytical models for the LRXYCPMEOS are then presented. As a case study, an LRXYCPMEOS with a motion range 10 mm × 10 mm in both positive directions is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, actuation force check, and buckling check. The analytical models are compared with the finite element analysis (FEA) models. Finally, dynamics consideration, manufacturability, out-of-plane stiffness, and result interpretation are discussed. It is shown that the LRXYCPMEOS in the case study has the following merits: large range of motion up to 20 mm × 20 mm, enhanced out-of-plane stiffness which is approximately 7.1 times larger than the associated planar XY CPM without the spatial compliant leg, and well-constrained parasitic motion with the parasitic translation along the Z-axis less than 2 × 10−4 mm, the parasitic rotation about the X-axis/Y-axis less than 2 × 10−6 rad, and the parasitic rotation about the Z-axis below 1 × 10−6 rad.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2000 ◽  
Vol 123 (4) ◽  
pp. 686-698 ◽  
Author(s):  
K. Iyer ◽  
C. A. Rubin ◽  
G. T. Hahn

Primary fretting fatigue variables such as contact pressure, slip amplitude and bulk cyclic stresses, at and near the contact interface between the rivet shank and panel hole in a single rivet-row, 7075-T6 aluminum alloy lap joint are presented. Three-dimensional finite element analysis is applied to evaluate these and the effects of interference and clamping stresses on the values of the primary variables and other overall measures of fretting damage. Two rivet geometries, non-countersunk and countersunk, are considered. Comparison with previous evaluations of the fretting conditions in similar but two-dimensional connections indicates that out-of-plane movements and attending effects can have a significant impact on the fatigue life of riveted connections. Variations of the cyclic stress range and other proponents of crack initiation are found to peak at distinct locations along the hole-shank interface, making it possible to predict crack initiation locations and design for extended life.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


2017 ◽  
Vol 16 (2) ◽  
pp. 859-887 ◽  
Author(s):  
Angelica Rosso ◽  
Lisandro A. Jiménez-Roa ◽  
João Pacheco de Almeida ◽  
Aydee Patricia Guerrero Zuniga ◽  
Carlos A. Blandón ◽  
...  

2018 ◽  
Vol 7 (2.21) ◽  
pp. 66 ◽  
Author(s):  
R Roopa ◽  
P Navin Karanth ◽  
S M. Kulkarni

This study reports the performance of piezo actuated compliant flexure diaphragm for micropump and MEMS application. To achieve the high performance of diaphragm at the low operating voltage compliant flexure diaphragm design is introduced. Very limited work has done on the diaphragms of micropump. Large numbers of mechanical micropumps have used plane diaphragms. The central deflection of diaphragm plays an important role in defining the micropump performance. The flow rate of mechanical type micropump strongly depends on the central deflection of diaphragm. In this paper compliant flexure diaphragms are designed for micropump to achieve higher deflection at lower operating voltage. Finite element analysis of compliant flexure diaphragm with single layer PVDF (Polyvinylidene fluoride) actuator is simulated in COMSOL. Compliant flexure diaphragms with a different number of flexures are analyzed. The central deflection of compliant flexure diaphragms is measured for driving voltages of 90V to 140V in 10 steps. The deflection of the compliant flexure diaphragm mainly depends on flexure width and length, the number of flexures in the diaphragm, PVDF thickness, diaphragm thickness and driving voltage. Use of compliant flexure diaphragm for micropump will reduce the mass and driving voltage of micropump. An attempt is made to compare the results of compliant flexure diaphragms with plane diaphragms. From the experimental results it is noticed that the compliant flexure diaphragm deflection is twice that of the plane diaphragm at same driving voltage. Deflection of three flexure and four flexure compliant diaphragms is 10.5µm and 11.5µm respectively at 140V.  


2002 ◽  
Vol 716 ◽  
Author(s):  
K.A. Peterson ◽  
C. Park ◽  
I. Dutta

AbstractDeformation of interconnect structures at the back-end of microelectronic devices during processing or service can have a pronounced effect on component reliability. Here, we use atomic force microscopy (AFM) to study plastic deformation and interfacial sliding of Cu interconnects lines on Si. The behavior of both stand-alone Cu lines and lines embedded in a low K dielectric was studied. Following thermal cycling, changes were observed in the in-plane Cu line dimensions, as well as the out-of plane step height between Cu and dielectric in single layer structures. These were attributed to differential deformation of the Cu/Si and Cu/dielectric material pairs due to thermal expansion mismatch, accommodated by interfacial creep. These results are discussed in light of previous work on the mechanism of interfacial creep. Some preliminary results on the distortion of Cu lines due to package-level stresses are also presented.


2005 ◽  
Vol 29 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Flavio Firmani ◽  
Ron P. Podhorodeski

A study of the effect of including a redundant actuated branch on the existence of force-unconstrained configurations for a planar parallel layout of joints is presented1. Two methodologies for finding the force-unconstrained poses are described and discussed. The first method involves the differentiation of the nonlinear kinematic constraints of the input and output variables with respect to time. The second method makes use of the reciprocal screws associated with the actuated joints. The force-unconstrained poses of non-redundantly actuated planar parallel manipulators can be mathematically expressed by means of a polynomial in terms of the three variables that define the dimensional space of the planar manipulator, i.e., the location and orientation of the end-effector. The inclusion of redundant actuated branches leads to a system of polynomials, i.e., one additional polynomial for each redundant branch added. Elimination methods are employed to reduce the number of variables by one for every additional polynomial. This leads to a higher order polynomial with fewer variables. The roots of the resulting polynomial describe the force-unconstrained poses of the manipulator. For planar manipulators it is shown that one order of infinity of force-unconstrained configurations is eliminated for every actuated branch, beyond three, added. As an example, the four-branch revolute-prismatic-revolute mechanism (4-RPR), where the prismatic joints are actuated, is presented.


Sign in / Sign up

Export Citation Format

Share Document