Integrating I-DEAS With Remanufacturing and Assemblability Assessments

Author(s):  
Uma-Sankar Kalyan-Seshu ◽  
Bert Bras

Abstract A growing concern about the environment, and especially about waste and landfill, has motivated research into environmentally conscious design and manufacturing approaches. This has placed new burdens on designers. In order to aid designers in their new tasks, one of our objectives is to minimize the gathering of information and maximize the utility of existing design information. In the research discussed in this paper, the specific objective is to enable the quantification and enhancement of product remanufacturability. Guidelines for integrating some of the commercially available CAD packages (like I-DEAS, Pro/ENGINEER, CATIA) to remanufacturing assessments, and ways to use the input information to these assessments for making other assessments (like assemblability) are developed. A number of case studies are given to illustrate the approach. Our long term goal is to identify the minimum amount of information needed to do effective design for the life-cycle.

Author(s):  
Patrick J. Newcomb ◽  
Bert Bras ◽  
David W. Rosen

Abstract Growing concern for the environment has spurred interest in environmentally conscious design and manufacturing. The concept of Design for the Life Cycle encompasses all aspects of a product’s life cycle from initial conceptual design, through normal product use, to the eventual disposal of the product. A product’s architecture, determined during the configuration design stage, plays a large role in determining the product’s life cycle characteristics. In this paper, modularity of product architectures with respect to life cycle concerns, not just product functionality and structure, is defined and applied in the analysis of architecture characteristics. A principal hypothesis underlying this work is that high degree of life cycle modularity can be beneficial across all viewpoints of interest because all interested people will view the product similarly and consistently. An architecture decomposition algorithm from the literature is adopted for partitioning architectures into modules from each life cycle viewpoint. Two measures of modularity are proposed: one that measures module correspondence between several viewpoints, and another that measures coupling between modules. The algorithm and measures are applied to the analysis and redesign of an automotive center console. Results of applying the algorithm and measures accurately reflected our intuitive understanding of the original center console design and predicted the results of our redesign. Furthermore, these measures incorporate only configuration information of the product; hence, can be used before detailed design stages.


Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


Author(s):  
C-y Tung ◽  
M H Wang

Increasing awareness of environmental burdens has led companies and designers to initiate design for the environment (DFE) programmes, which consider the design of products from the ‘cradle to grave’ and is also known as ‘life-cycle design’. In this paper, the use of a novel environmental performance technique to be used at the early stage of product design is presented. This technique, which is to be used as a framework for green product design, is demonstrated in this paper by evaluating the environmental performance between plastic and steel fuel tanks. The fuel tank comparison can be divided into five steps. In the first four steps, a modified house of quality (HOQ) is used to analyse the performance of fuel tanks in terms of requirements of environmentally conscious design. The final step is an overall assessment that synthesizes the results from the previous four analyses. As a result, the comprehensive environmental effects in the whole life cycle of fuel tanks are captured in the early stage of design.


Author(s):  
Kei Kurakawa ◽  
Kumiyo Nakakoji ◽  
Takashi Kiriyama

Abstract We have developed the Green Browser to support a team of designers to collaboratively construct and share the product life cycle information for environmentally conscious design. We developed the ReqC model (Requirement-Centered Model) and the GLC model (Green Life-Cycle Model) for structuring design information in the Green Browser. The system allows the design team to construct the GLC model by chunking discourse and assigning types. It provides a visual presentation of the concept and scenario, and allows the user outside the team to share the model across different computer environments. We used Java2 and CORBA for system implementation. To test implementation of the system, we built a GLC model by using data collected in an industrial design project.


Manufacturing ◽  
2003 ◽  
Author(s):  
Yasushi Umeda

This paper describes the outline of “life cycle design” course the author teaches and illustrates some experiences and findings with results of questionnaires to attendees of the lecture. “Life cycle design” is a half-year course to third-year students at Tokyo Metropolitan University, Japan. The main subject is environmentally conscious design focusing on life cycle thinking. This course intends to establish general and correct viewpoints toward relationship between manufacturing industry and the environmental issues, which are indispensable knowledge as mechanical engineers, rather than to educate environmental specialists. Results of questionnaires indicate that this course succeeded in increasing students’ interest in this area and awareness of importance of the environmental issues. However, some students feel bewildered because of wide variety of topics and, therefore, lack of a central theory.


2016 ◽  
Vol 10 (5) ◽  
pp. 677-677
Author(s):  
Yasushi Umeda ◽  

As the third special issue on Design and Manufacturing for Environmental Sustainability for IJAT, this issue focuses on design and manufacturing theories and methodologies for achieving environmental sustainability and the topic of the special issue seems to be becoming established in this journal. This special issue contains six articles consisting of a wide variety of rather novel topics emerging in the domain of design and manufacturing for environmental sustainability. The first three deal with design problem in the broader sense: designing of system of systems taking distributed energy generation systems, upgradable design problems, and selection problem of end-of-life products recovery options integrated from the view of environmental load and cost. The last three papers deal with manufacturing problems in the broader sense – motion extraction problems for disassembly automation, machine tool energy efficiency, and optimization problems related to machine tool operating conditions for increasing environmental sustainability. Some papers, revised and extended at the editor’s request, were presented originally at EcoDesign 2015, the ninth international symposium on environmentally conscious design and inverse manufacturing, held in Tokyo, Japan, 2015. The editor thanks the authors and reviewers for their comprehensive efforts in making this special issue possible and hopes these articles will encourage further research on design and manufacturing for environmental sustainability.


Author(s):  
JAY LEE

Japan has been a world leader in manufacturing in the past several decades. Undoubtedly, this leadership will persist well into the 21st century. It is, therefore, very important to understand the status of Japan's manufacturing technologies as well as its projected manufacturing strategies for the future, especially those technologies which would generate substantial impact on the manufacturing industries in the next five years. This paper highlights current Japanese manufacturing strategies. Examples on several major industries including the industrial machinery industry, the semiconductor industry, and the automotive industry will be given. In addition, major initiatives on emerging technologies, including micromachine, environmentally conscious design and manufacturing, and manufacturing globalization support are described.


Sign in / Sign up

Export Citation Format

Share Document