Interactive Multiobjective Optimization Design Strategy for Decision Based Design

Author(s):  
Ravindra V. Tappeta ◽  
John E. Renaud

Abstract This research focuses on multi-objective system design and optimization. The primary goal is to develop and test a mathematically rigorous and efficient interactive multi-objective optimization algorithm that takes into account the Decision Maker’s (DM’s) preferences during the design process. An Interactive Multi-Objective Optimization Procedure (IMOOP) developed in [12] has been modified in this research to include the DM’s local preference functions in an Iterative Decision Making Strategy (IDMS). This enhanced multiobjective optimization procedure called the interactive MultiObjective Optimization Design Strategy (iMOODS) provides the DM with a formal means for efficient design exploration around a given Pareto point. The use of local preference functions allows the original algorithm [12] to be modified such that the second order Pareto surface approximation is more accurate in the preferred region of the Pareto surface. The iMOODS has been successfully applied to two test problems. The first problem consists of a set of simple analytical expressions for the objectives and constraints. The second problem is the design and sizing of a high-performance and low-cost ten bar structure that has multiple objectives. The results indicate that the class functions are effective in capturing the local preferences of the DM. The Pareto designs that reflect the DM’s preferences can be efficiently generated within IDMS.

1999 ◽  
Vol 123 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Ravindra V. Tappeta ◽  
John E. Renaud

This research focuses on multi-objective system design and optimization. The primary goal is to develop and test a mathematically rigorous and efficient interactive multi-objective optimization algorithm that takes into account the Decision Maker’s (DM’s) preferences during the design process. An interactive MultiObjective Optimization Design Strategy (iMOODS) has been developed in this research to include the Pareto sensitivity analysis, Pareto surface approximation and local preference functions to capture the DM’s preferences in an Iterative Decision Making Strategy (IDMS). This new multiobjective optimization procedure provides the DM with a formal means for efficient design exploration around a given Pareto point. The use of local preference functions allows the iMOODS to construct the second order Pareto surface approximation more accurately in the preferred region of the Pareto surface. The iMOODS has been successfully applied to two test problems. The first problem consists of a set of simple analytical expressions for the objective and constraints. The second problem is the design and sizing of a high-performance and low-cost ten bar structure that has multiple objectives. The results indicate that the class functions are effective in capturing the local preferences of the DM. The Pareto designs that reflect the DM’s preferences can be efficiently generated within IDMS.


2011 ◽  
Vol 2011 ◽  
pp. 1-37 ◽  
Author(s):  
Wenping Zou ◽  
Yunlong Zhu ◽  
Hanning Chen ◽  
Beiwei Zhang

Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC) to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 45 ◽  
pp. 101111
Author(s):  
Mohammad Hassan Shahverdian ◽  
Ali Sohani ◽  
Hoseyn Sayyaadi ◽  
Saman Samiezadeh ◽  
Mohammad Hossein Doranehgard ◽  
...  

Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2013 ◽  
Vol 307 ◽  
pp. 161-165
Author(s):  
Hai Jin ◽  
Jin Fa Xie

A multi-objective genetic algorithm is applied into the layout optimization of tracked self-moving power. The layout optimization mathematical model was set up. Then introduced the basic principles of NSGA-Ⅱ, which is a Pareto multi-objective optimization algorithm. Finally, NSGA-Ⅱwas presented to solve the layout problem. The algorithm was proved to be effective by some practical examples. The results showed that the algorithm can spread toward the whole Pareto front, and provide many reasonable solutions once for all.


2016 ◽  
Vol 693 ◽  
pp. 243-250
Author(s):  
Zhi Zhong Guo ◽  
Yun Shun Zhang ◽  
Shi Hao Liu

It is discovered that the vibration resistance of spindle systems needs to be improved based on the statics analysis, modal analysis and heating-force coupling analysis of spindle systems of CNC gantry machine tools. The design variables of optimization are set according to sensitivity analysis, multi-objective and dynamic optimization design is realized and its designing scheme is gained for spindle structure. The research results show that vibration resistance can be improved without change of the quality and static property of spindle systems of CNC gantry machine tools.


Sign in / Sign up

Export Citation Format

Share Document