scholarly journals Predicting the Energy Consumption of a Robot in an Exploration Task Using Optimized Neural Networks

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 920
Author(s):  
Liesle Caballero ◽  
Álvaro Perafan ◽  
Martha Rinaldy ◽  
Winston Percybrooks

This paper deals with the problem of determining a useful energy budget for a mobile robot in a given environment without having to carry out experimental measures for every possible exploration task. The proposed solution uses machine learning models trained on a subset of possible exploration tasks but able to make predictions on untested scenarios. Additionally, the proposed model does not use any kinematic or dynamic models of the robot, which are not always available. The method is based on a neural network with hyperparameter optimization to improve performance. Tabu List optimization strategy is used to determine the hyperparameter values (number of layers and number of neurons per layer) that minimize the percentage relative absolute error (%RAE) while maximize the Pearson correlation coefficient (R) between predicted data and actual data measured under a number of experimental conditions. Once the optimized artificial neural network is trained, it can be used to predict the performance of an exploration algorithm on arbitrary variations of a grid map scenario. Based on such prediction, it is possible to know the energy needed for the robot to complete the exploration task. A total of 128 tests were carried out using a robot executing two exploration algorithms in a grid map with the objective of locating a target whose location is not known a priori by the robot. The experimental energy consumption was measured and compared with the prediction of our model. A success rate of 96.093% was obtained, measured as the percentage of tests where the energy budget suggested by the model was enough to actually carry out the task when compared to the actual energy consumed in the test, suggesting that the proposed model could be useful for energy budgeting in actual mobile robot applications.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Jose J. Lopez-Perez ◽  
Uriel H. Hernandez-Belmonte ◽  
Juan-Pablo Ramirez-Paredes ◽  
Marco A. Contreras-Cruz ◽  
Victor Ayala-Ramirez

In mobile robotics, the exploration task consists of navigating through an unknown environment and building a representation of it. The mobile robot community has developed many approaches to solve this problem. These methods are mainly based on two key ideas. The first one is the selection of promising regions to explore and the second is the minimization of a cost function involving the distance traveled by the robots, the time it takes for them to finish the exploration, and others. An option to solve the exploration problem is the use of multiple robots to reduce the time needed for the task and to add fault tolerance to the system. We propose a new method to explore unknown areas, by using a scene partitioning scheme and assigning weights to the frontiers between explored and unknown areas. Energy consumption is always a concern during the exploration, for this reason our method is a distributed algorithm, which helps to reduce the number of communications between robots. By using this approach, we also effectively reduce the time needed to explore unknown regions and the distance traveled by each robot. We performed comparisons of our approach with state-of-the-art methods, obtaining a visible advantage over other works.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3445 ◽  
Author(s):  
Jianlin Liu ◽  
Fenxiong Chen ◽  
Jun Yan ◽  
Dianhong Wang

Data compression is a useful method to reduce the communication energy consumption in wireless sensor networks (WSNs). Most existing neural network compression methods focus on improving the compression and reconstruction accuracy (i.e., increasing parameters and layers), ignoring the computation consumption of the network and its application ability in WSNs. In contrast, we pay attention to the computation consumption and application of neural networks, and propose an extremely simple and efficient neural network data compression model. The model combines the feature extraction advantages of Convolutional Neural Network (CNN) with the data generation ability of Variational Autoencoder (VAE) and Restricted Boltzmann Machine (RBM), we call it CBN-VAE. In particular, we propose a new efficient convolutional structure: Downsampling-Convolutional RBM (D-CRBM), and use it to replace the standard convolution to reduce parameters and computational consumption. Specifically, we use the VAE model composed of multiple D-CRBM layers to learn the hidden mathematical features of the sensing data, and use this feature to compress and reconstruct the sensing data. We test the performance of the model by using various real-world WSN datasets. Under the same network size, compared with the CNN, the parameters of CBN-VAE model are reduced by 73.88% and the floating-point operations (FLOPs) are reduced by 96.43% with negligible accuracy loss. Compared with the traditional neural networks, the proposed model is more suitable for application on nodes in WSNs. For the Intel Lab temperature data, the average Signal-to-Noise Ratio (SNR) value of the model can reach 32.51 dB, the average reconstruction error value is 0.0678 °C. The node communication energy consumption can be reduced by 95.83%. Compared with the traditional compression methods, the proposed model has better compression and reconstruction accuracy. At the same time, the experimental results show that the model has good fault detection performance and anti-noise ability. When reconstructing data, the model can effectively avoid fault and noise data.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shen Li ◽  
Hailong Zhang ◽  
Huachun Tan ◽  
Zhiyu Zhong ◽  
Zhuxi Jiang

Mileage anxiety is one of the most important factors that affect the driving experience due to the limitation of battery capacity. Robust and accurate prediction of the energy consumption of the journey of the electric vehicle can guide the driver to allocate the power rationally and relieve the anxiety of the mileage. Since vehicle sharing is the biggest application scenario of electric vehicles, it is a critical challenge in share mobility research area. In this paper, a travel energy consumption prediction model of electric vehicles is proposed in order to improve the mobility of shared cars and reduce the anxiety of drivers because they are worried about insufficient power. A recurrent neural network with attention mechanism and deep neural network is used to build the model. To validate the proposed model, a simulation is demonstrated based on both traffic and vehicle information. After the simulation, experimental results show that the proposed model has high prediction accuracy, and we also show through visualization how the model finds high relevant road segments of the road network while dealing with corresponding traffic state input.


2014 ◽  
Vol 59 (4) ◽  
pp. 1061-1076 ◽  
Author(s):  
D.C. Panigrahi ◽  
S.K. Ray

Abstract The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method. All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario.


Author(s):  
Ahmad Reza Jafarian-Moghaddam

AbstractSpeed is one of the most influential variables in both energy consumption and train scheduling problems. Increasing speed guarantees punctuality, thereby improving railroad capacity and railway stakeholders’ satisfaction and revenues. However, a rise in speed leads to more energy consumption, costs, and thus, more pollutant emissions. Therefore, determining an economic speed, which requires a trade-off between the user’s expectations and the capabilities of the railway system in providing tractive forces to overcome the running resistance due to rail route and moving conditions, is a critical challenge in railway studies. This paper proposes a new fuzzy multi-objective model, which, by integrating micro and macro levels and determining the economical speed for trains in block sections, can optimize train travel time and energy consumption. Implementing the proposed model in a real case with different scenarios for train scheduling reveals that this model can enhance the total travel time by 19% without changing the energy consumption ratio. The proposed model has little need for input from experts’ opinions to determine the rates and parameters.


2021 ◽  
pp. 1-16
Author(s):  
Ibtissem Gasmi ◽  
Mohamed Walid Azizi ◽  
Hassina Seridi-Bouchelaghem ◽  
Nabiha Azizi ◽  
Samir Brahim Belhaouari

Context-Aware Recommender System (CARS) suggests more relevant services by adapting them to the user’s specific context situation. Nevertheless, the use of many contextual factors can increase data sparsity while few context parameters fail to introduce the contextual effects in recommendations. Moreover, several CARSs are based on similarity algorithms, such as cosine and Pearson correlation coefficients. These methods are not very effective in the sparse datasets. This paper presents a context-aware model to integrate contextual factors into prediction process when there are insufficient co-rated items. The proposed algorithm uses Latent Dirichlet Allocation (LDA) to learn the latent interests of users from the textual descriptions of items. Then, it integrates both the explicit contextual factors and their degree of importance in the prediction process by introducing a weighting function. Indeed, the PSO algorithm is employed to learn and optimize weights of these features. The results on the Movielens 1 M dataset show that the proposed model can achieve an F-measure of 45.51% with precision as 68.64%. Furthermore, the enhancement in MAE and RMSE can respectively reach 41.63% and 39.69% compared with the state-of-the-art techniques.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


Sign in / Sign up

Export Citation Format

Share Document