scholarly journals A Force Sensing Instrument Assisted Soft Tissue Mobilization Device

Author(s):  
Ahmed M. Alotaibi ◽  
Sohel Anwar ◽  
M. Terry Loghmani

Instrument assisted soft tissue mobilization (IASTM) is a form of massage using rigid manufactured or cast devices. The delivered force, which is a critical parameter in massage during IASTM, has not been measured or standardized for most clinical practices. There is a strong need to characterize the delivered force to a patient. This paper proposes a novel mechatronic design for a specific instrument to apply localized pressure which is a frequently used tool to clinically deliver localize pressure to treat soft tissue. The design is based on 1-D compression load cells, where 4-load cells are used to measure the force components in three-dimensional space. Here the proposed design of the mechatronic IASTM tool is modeled, analyzed, and simulated as a mechanical structure with simplifying assumptions on the elastic behavior of the skin under a certain amount of force conditions. A finite element model of a human arm is simulated to show the relationship between the applied forces, stress and strain on the skin, and force measurements to improve the design. The relation between device’s tip and the modeled arm was assumed to be frictional contact similar to the real IASTM practice.

Author(s):  
Ahmed M. Alotaibi ◽  
Sohel Anwar ◽  
M. Terry Loghmani ◽  
Stanley Chien

Instrument assisted soft tissue mobilization (IASTM) is a form of massage using rigid manufactured or cast devices. The delivered force, which is a critical parameter in massage during IASTM, has not been measured or standardized for most clinical practices. In addition to the force, the angle of treatment and frequency play an important role during IASTM. As a result, there is a strong need to characterize the delivered force to a patient, angle of treatment, and stroke frequency. This paper proposes a novel mechatronic design for a specific instrument from Graston Technique® (Model GT-3), which is a frequently used tool to clinically deliver localize pressure to the soft tissue. The design uses a 3D load cell, which can measure all three force components force simultaneously. The overall design is implemented with an IMUduino microcontroller chip which can also measure tool orientation angles and provide computed stroke frequency. The prototype of the mechatronic IASTM tool was validated for force measurements using an electronic plate scale that provided the baseline force values to compare with the applied force magnitudes measured by the device. The load cell measurements and the scale readings were found to be in agreement within the expected degree of accuracy. The stroke frequency was computed using the force data and determining the peaks during force application. The orientation angles were obtained from the built-in sensors in the microchip.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiu Guan ◽  
Xiaochen Du ◽  
Yan Shao ◽  
Lili Lin ◽  
Shengyong Chen

Scalp soft tissue expansion is one of the key medical techniques to generate new skin tissue for correcting various abnormalities and defects of skin in plastic surgery. Therefore, it is very important to work out the appropriate approach to evaluate the increase of expanded scalp area and to predict the shape, size, number, and placement of the expander. A novel method using finite element model is proposed to solve large deformation of scalp expansion in this paper. And the procedure to implement the scalp tissue expansion with finite element method is also described in detail. The three-dimensional simulation results show that the proposed method is effective, and the analysis of simulation experiment shows that the volume and area of the expansion scalp can be accurately calculated and the quantity, location, and size of the expander can also be predicted successfully with the proposed model.


Author(s):  
Guifeng Wang ◽  
Huiyue Dong ◽  
Yingjie Guo ◽  
Yinglin Ke

Robotic boring is an effective way to implement finish machining of intersection holes. However, to a certain extent, its application is limited due to the low rigidity of the robot, whose stiffness brings on high vibration levels. In this study, a new approach based on an equivalent stiffness is proposed to gain a fundamental understanding for the cutting mechanism and vibration performance of a robotic boring system. In the approach, the robotic boring system in one direction is regarded as a mass–spring–damping unit according to the structure characteristics of the robot. Thus, the whole robotic boring system is equivalent to a mass–spring–damping group in three-dimensional space. The stiffness and natural frequency of the robot system were measured by stiffness identification and a modal test on an ABB IRB 6600-175/2.55 robot. An equivalent three-dimensional finite element model based on this approach was established to simulate the robotic boring process, and a verification experiment was conducted to determine the accuracy of the finite element simulation. The results show that the simulated cutting force components and the amplitude in the feed direction are in good agreement with the experiment under different cutting conditions, and this proposed approach is feasible.


Geology ◽  
2021 ◽  
Author(s):  
Heriberto Rochín-Bañaga ◽  
Donald W. Davis ◽  
Tobias Schwennicke

Previous U-Pb dating of fossils has had only limited success because of low uranium content and abundance of common Pb as well as element mobility during late diagenesis. We report the first accurate U-Pb dating of fossilized soft tissue from a Pliocene phosphatized bivalve mold using laser ablation–inductively coupled mass spectrometry (LA-ICPMS). The fossilized soft tissue yields a diagenetic U-Pb age of 3.16 ± 0.08 Ma, which is consistent with its late Pliocene stratigraphy and similar to the oldest U-Pb age measured on accompanying shark teeth. Phosphate extraclasts give a distinctly older age of 5.1 ± 1.7 Ma, indicating that they are likely detrital and may have furnished P, promoting phosphatization of the mold. The U-Pb ages reported here along with stratigraphic constraints suggest that diagenesis occurred shortly after the death of the bivalve and that the U-Pb system in the bivalve mold remained closed until the present. Shark teeth collected from the same horizon show variable resetting due to late diagenesis. Data were acquired as line scans in order to exploit the maximum Pb/U variation and were regressed as counts, rather than ratios, in three-dimensional space using a Bayesian statistical method.


Author(s):  
Ahmed M. Alotaibi ◽  
Sohel Anwar ◽  
M. Terry Loghmani

Instrument-assisted soft tissue manipulation (IASTM) is a form of manual therapy which is performed with rigid cast tools. The applied force during the IASTM process has not been quantified or regulated. Nor have the angle of treatment and strokes frequency been quantified which contribute to the overall recovery process. This paper presents a skin modeling analysis used in the design of a novel mechatronic device that measures force in an IASTM application with localized pressures, similar to traditional, nonmechatronic IASTM devices that are frequently used to treat soft tissue dysfunctions. Thus, quantifiable soft tissue manipulation (QSTM) represents an advancement in IASTM. The innovative mechatronic QSTM device is based on one-dimensional (1D) compression load cells, where only four compression force sensors are needed to quantify all force components in three-dimensional (3D) space. Here, such a novel QSTM mechatronics device is simulated, analyzed, and investigated using finite element analysis (FEA). A simplified human arm was modeled to investigate the relationship between the measured component forces, the applied force, and the stress and strain distribution on the skin surface to validate the capability of the QSTM instrument. The results show that the QSTM instrument as designed is able to correlate the measured force components to the applied tool-tip force in a straight movement on the skin model.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650010
Author(s):  
JIANWEI SUN ◽  
BINGSHAN YAN ◽  
WENZHONG NIE ◽  
ZHONGZHENG ZHI ◽  
KEKE GUI ◽  
...  

Objectives: The study was to establish a precise three-dimensional (3D) finite element model (FEM) of the distal radioulnar joint (DRUJ) and then to validate its accuracy for the application to the research on clinical biomechanics. Materials and methods: The right forearm DRUJ of a volunteer (male, 28 years old, 62 kilograms) was scanned by computed tomography (CT) and magnetic resonance imaging (MRI). The resulting sectional images were input into MIMICS10.1 and ANSYS10.0 to generate 3D FEM of the DRUJ. With this FEM, the bending load, axial compression load and the torsion load conditions were simulated, and the vonmises stress distribution of the DRUJ was detected. The simulation results were compared with the biomechanics experiment results which were reported by the literatures. Results: The constructed FEM consisted of 333,805 elements and 508,384 nodes. Together, the simulation results with this FEM were in consistent with those of the reported experiments in bending load, axial compression load and torsion load conditions. Discussion: The 3D FEM of the DRUJ can reflect the real geometric structure of the DRUJ objectively and the simulation with this FEM can predict the results of the biomechanics experiments successfully.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 631-638
Author(s):  
Hucheng Chen ◽  
Wei Han ◽  
Jinhao Qiu

Better understanding of the characteristics of the traveling wave and three-dimensional trajectory related to motion on the surface of the stator is very important for the design and performance improvement of the ultrasonic motors. In this paper, an accurate finite element model of a single stator with a fully coupled piezoelectric layer was established at a moderate computational cost. The finite element model was verified by experimental test at the inverse resonance point. Based on this model, the traveling wave and three-dimensional trajectory of stator surface, including the influence of the input voltage on the phase and amplitude of the displacements in three directions, are investigated. The results show that the trajectory of particles on the stator surface is an ellipse in three-dimensional space due to the phase differences between the three components of displacement in the radial, circumferential and axial directions. The amplitude of radial displacement is about 39.5% of that in the circumferential displacement, which should not be neglected.


Sign in / Sign up

Export Citation Format

Share Document