Virtual Motion Camouflage Based Visual Servo Control of a Leaf Picking Mechanism

Author(s):  
Sinem Gozde Defterli ◽  
Yunjun Xu

For a lately constructed disease detection field robot, the segregation of unhealthy leaves from strawberry plants is a major task. In field operations, the picking mechanism is actuated via three previously derived inverse kinematic algorithms and their performances are compared. Due to the high risk of rapid and unexpected deviation from the target position under field circumstances, some compensation is considered necessary. For this purpose, an image-based visual servoing method via the camera-in-hand configuration is activated when the end-effector is nearby to the target leaf subsequent to performing the inverse kinematics algorithms. In this study, a bio-inspired trajectory optimization method is proposed for visual servoing and the method is constructed based on a prey-predator relationship observed in nature (“motion camouflage”). In this biological phenomenon, the predator constructs its path in a certain subspace while catching the prey. The proposed algorithm is tested both in simulations and in hardware experiments.

Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


2013 ◽  
Vol 415 ◽  
pp. 3-8
Author(s):  
Da Wei Huang ◽  
Bai Yan Liu ◽  
Ru Wei Zhang

The follow-up control of concrete pump truck is in order to solve the problem that whole boom follows the movement of boom end under the artificial traction. Focus on real-time detection of boom end azimuth change and inverse kinematic problems of redundant boom system, two-axis gravitational accelerometer is used to detect azimuthal variation of boom end, and the best motion trajectory of boom is determined by solving constrained nonlinear optimization function which takes minimum displacement distance of barycentre for the whole boom as the optimization goal. At last, relative azimuth and translation of boom end, rotation of boom are solved together to make translation and rotation of boom being synchronization. In this way to ensure whole boom follows the artificial traction in theory. In order to verify the discussion above, matlab is used to simulate several different working conditions for the follow-up control of boom.


2021 ◽  
Vol 13 (2) ◽  
pp. 125-134
Author(s):  
Fransisko Limanuel ◽  
Calvin Susanto ◽  
Ferry Rippun Gideon Manalu

This paper will discuss the calculation of inverse kinematic which will be used to control the 6-DOF articulated robot. This robot consists of 6 Dynamixel MX-28 smart servo with OpenCM 9.04 microcontroller. The articulated robot has been simplified to 4-DOF because there are no obstacles in the work area and no special movements are required. The calculation method uses the intersection point equation between the ball and the line, so that it can make it easier to determine the point in calculating the kinematic inverse. The experiment is carried out using the desired position as input for the kinematic inverse to produce the angle of each joint. From the angle of each joint obtained, it will be entered into forward kinematic so that the end-effector position will be obtained. The desired position will be compared with the end-effector position, and then how much difference will be calculated. From the experimental results, it was found that the inverse kinematic method which has been inverted by the forward kinematic produces the same final position. Keywords: 6-DOF manipulator, Articulated robot, inverse kinematics and forward kinematics, Dynamixel MX-28, OpenCM 9


2016 ◽  
Vol 7 (2) ◽  
pp. 155-166
Author(s):  
Zirong Luo ◽  
Jianzhong Shang ◽  
Guowu Wei ◽  
Lei Ren

Abstract. This paper presents a novel bio-inspired modular robotic arm that is purely evolved and developed from a mechanical stem cell. Inspired by stem cell whilst different from the other robot "cell" or "molecule", a fundamental mechanical stem cell is proposed leading to the development of mechanical cells, bones and a Sarrus-linkage-based muscle. Using the proposed bones and muscles, a bio-inspired modular-based five-degrees-of-freedom robotic arm is developed. Then, kinematics of the robotic arm is investigated which is associated with an optimization-method-based numerical iterative algorithm leading to the inverse kinematic solutions through solving the non-linear transcendental equations. Subsequently, numerical example of the proposed robotic arm is provided with simulations illustrating the workspace and inverse kinematics of the arm. Further, a prototype of the robotic arm is developed which is integrated with low-level control systems, and initial motion and manipulation tests are implemented. The results indicate that this novel robotic arm functions appropriately and has the virtues of lower cost, larger workspace, and a simpler structure with more compact size.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuval Zaidel ◽  
Albert Shalumov ◽  
Alex Volinski ◽  
Lazar Supic ◽  
Elishai Ezra Tsur

Neuromorphic implementation of robotic control has been shown to outperform conventional control paradigms in terms of robustness to perturbations and adaptation to varying conditions. Two main ingredients of robotics are inverse kinematic and Proportional–Integral–Derivative (PID) control. Inverse kinematics is used to compute an appropriate state in a robot's configuration space, given a target position in task space. PID control applies responsive correction signals to a robot's actuators, allowing it to reach its target accurately. The Neural Engineering Framework (NEF) offers a theoretical framework for a neuromorphic encoding of mathematical constructs with spiking neurons for the implementation of functional large-scale neural networks. In this work, we developed NEF-based neuromorphic algorithms for inverse kinematics and PID control, which we used to manipulate 6 degrees of freedom robotic arm. We used online learning for inverse kinematics and signal integration and differentiation for PID, offering high performing and energy-efficient neuromorphic control. Algorithms were evaluated in simulation as well as on Intel's Loihi neuromorphic hardware.


Author(s):  
Muhammed R. Pac ◽  
Micky Rakotondrabe ◽  
Sofiane Khadraoui ◽  
Dan O. Popa ◽  
Philippe Lutz

The paper presents a new methodology for solving the inverse problem of manipulator precision design. Such design problems are often encountered when the end-effector uncertainty bounds are given, but it is not clear how to allocate precision bounds on individual robot axes. The approach presented in this paper uses interval analysis as a tool for uncertainty modelling and computational analysis. In prior work, the exponential formulation of the forward kinematics map was extended to intervals. Here, we use this result as an inclusion function in the computation of solutions to set-valued inverse kinematic problems. Simulation results are presented in two case studies to illustrate how we can go from an uncertainty interval at the end-effector to a design domain of allowable uncertainties at individual joints and links. The proposed method can be used to determine the level of precision needed in the design of a manipulator such that a predefined end-effector precision can be guaranteed. Also, the approach is general as such it can be easily extended to any degree-of-freedom and kinematic configuration.


2014 ◽  
Vol 611 ◽  
pp. 75-82 ◽  
Author(s):  
Ivan Virgala ◽  
Alexander Gmiterko ◽  
Michal Kelemen ◽  
Ľubica Miková ◽  
Martin Varga

Our study deals with inverse kinematic model of humanoid robot hand. It is important for modeling to know biomechanics of biological human hand, what is discussed in the second section. Based on theoretical aspect of kinematic configuration of the hand, the hand consisting of 24 degrees of freedom is assumed. Subsequently, there are four numerical methods of inverse kinematics used, namely pseudoinverse method, Jacobian transpose method, damped least squares and optimization method. Each of them is simulated in software Matlab and the results are compared and discussed. In the conclusion the best method from the view of solution time and number of iteration cycles is evaluated.


2014 ◽  
Vol 8 (1) ◽  
pp. 457-461
Author(s):  
Xuewen Rong ◽  
Rui Song ◽  
Hui Chai ◽  
Xiaolin Ma

This paper gives a mechanism design of a six DOF hydraulically actuated manipulator firstly. Then its DH frames and link parameters are given. Next, its forward kinematic equations are derived according to homogeneous transformation method. Fourthly, the analytical solutions of its inverse kinematics are solved by given the position and posture of the end-effector simultaneously. The posture of the end-effector is given with three z-y-z Euler angles for they have obvious geometry meanings and are easy to be measured. In addition, the correctness of the inverse kinematic equations is verified in Simulink by comparing many sets of randomly produced joint variables in workspace and their corresponding inverse solutions.


2020 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Dongzhen Wang ◽  
Daqing Huang ◽  
Cheng Xu ◽  
Wei Han

Unmanned aerial vehicles (UAVs) play a key role in modern surveillance-related missions. A major task for performing these missions is to find the precise location of a moving target in real-time, for which the main challenge is to estimate the target position to high precision using the noisy measurements from the airborne sensors. In this paper, we present a closed-form on-line simultaneous target localization and UAV trajectory optimization method based on the visual platform, which can effectively minimize the localization uncertainty to the target. The proposed method can be elucidated explicitly using two phases, of which, in the target localization phase, the expended information filtering (EIF) is exploited, which can express the predicted Fisher information matrix (FIM) of the target explicitly and iteratively, and in the UAV trajectory optimization phase, the property of the predicted FIM is exploited to establish the UAV waypoint optimization objective by taking account of the UAV motion limit. Compared with existing methods of the same class, the proposed method not only estimates the next target position more correctly, but also takes the error of the target motion into consideration, thus improving the effectiveness of the optimized UAV trajectory. Both simulations and field experiments were conducted, which show that the proposed method outperformed the existing methods.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


Sign in / Sign up

Export Citation Format

Share Document