Modeling, Testing, and Evaluation of a Building-Integrated Photovoltaic-Thermal Collector

Author(s):  
Charles D. Corbin ◽  
Michael J. Brandemuehl

The performance of Building-Integrated Photovoltaic-Thermal (BIPV/T) collector is examined in this study. A full scale-test collector is monitored over several weeks in the summer of 2008 and measured data is used to calibrate a heat transfer model implemented in a common scientific computing software package. Following calibration, error between experimental measurements and the calibrated model outputs is within the limits of measurement uncertainty. Collector simulations are constructed to examine thermal efficiency, the effectiveness of the collector as a night-sky radiator, the effect of heat collection on electrical efficiency, the effect of two common exterior convection coefficients on collector performance, and the effect of eliminating the air gap between the PV and absorber surfaces. Overall collector thermal efficiency is relatively low compared to existing collectors. However, the potential low cost of the system could allow larger collector areas to compensate for low efficiency, especially in warm climates. Combined thermal and electrical efficiency can be as high as 34%. Additional analysis also indicates that the predicted thermal performance is highly dependent on the thermal resistance between the PV cells and the absorber plate and is sensitive to assumptions regarding wind-driven convection heat transfer coefficients.

1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


Author(s):  
Dong Eun Lee ◽  
Jung Hyun Jang ◽  
Man Young Kim

In this work, the development of a mathematical heat transfer model for a walking-beam type reheating furnace is described and preliminary model predictions are presented. The model can predict the heat flux distribution within the furnace and the temperature distribution in the slab throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings, including the radiant heat transfer among the slabs, the skids, the hot combustion gases and the furnace wall as well as the gas convection heat transfer in the furnace. In addition, present model is designed to be able to predict the formation and growth of the scale layer on the slab in order to investigate its effect on the slab heating. A comparison is made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is found. The results of the present simulation show that the effect of the scale layer on the slab heating is considerable.


Author(s):  
Sumit V. Prasad ◽  
A. K. Nayak

The present experimental investigation in a scaled facility of an Indian pressurized heavy water reactors (PHWRs) is focused on the heat transfer behavior from the calandria vessel (CV) to the calandria vault during a prolonged severe accident condition in the presence of decay heat. The transient heat transfer simulates the conditions from single phase to boiling in the calandria vault water, partial uncovery of the CV due to boil off of water in the vault, and refill of calandria vault. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics similar to prototypic material. About 60 kg of the molten material was poured into the test section at about 1100 °C. Decay heat in the melt pool was simulated by using high watt cartridge type heaters. The temperature distributions inside the molten pool across the CV wall thickness and vault water were measured for prolonged period which can be divided into various phases, viz., single phase natural convection heat transfer in calandria vault, boiling heat transfer in calandria vault, partial uncovery of CV, and refilling calandria vault. Experimental results showed that once the crust formed, the inner vessel temperature remained very low and vessel integrity maintained. Even boiling of calandria vault water and uncovery of CV had negligible effect on melt, CV, and vault water temperature. The heat transfer coefficients on outer vessel surface were obtained and compared with various conditions.


2000 ◽  
Author(s):  
M. Kumagai ◽  
R. S. Amano ◽  
M. K. Jensen

Abstract A numerical and experimental investigation on cooling of a solid surface was performed by studying the behavior of an impinging jet onto a fixed flat target. The local heat transfer coefficient distributions on a plate with a constant heat flux were computationally investigated with a normally impinging axisymmetric jet for nozzle diameter of 4.6mm at H/d = 4 and 10, with the Reynolds numbers of 10,000 and 40,000. The two-dimensional cylindrical Navier-Stokes equations were solved using a two-equation k-ε turbulence model. The finite-volume differencing scheme was used to solve the thermal and flow fields. The predicted heat transfer coefficients were compared with experimental measurements. A universal function based on the wave equation was developed and applied to the heat transfer model to improve calculated local heat transfer coefficients for short nozzle-to-plate distance (H/d = 4). The differences between H/d = 4 and 10 due to the correlation among heat transfer coefficient, kinetic energy and pressure were investigated for the impingement region. Predictions by the present model show good agreement with the experimental data.


1959 ◽  
Vol 81 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Samuel Globe ◽  
David Dropkin

This paper presents results of an experimental investigation of convective heat transfer in liquids placed between two horizontal plates and heated from below. The liquids used were water, silicone oils of 1.5, 50, and 1000 centistoke kinematic viscosities, and mercury. The experiments covered a range of Rayleigh numbers between 1.51(10)5 and 6.76(10)8. and Prandtl numbers between 0.02 and 8750. Tests were made in cylindrical containers having copper tops and bottoms and insulating walls. For water and silicone oils the container was 5 in. in diam and 2 in. high. For mercury, two containers were used, both 5.28 in. in diameter, but one 1.39 in. high and another 2.62 in. high. In all cases the bottom plates were heated by electric heaters. The top plates were air-cooled for the water and silicone-oil experiments and water-cooled for the mercury tests. To prevent amalgamation, the copper plates of the mercury container were chromium plated. Surface temperatures were measured by thermocouples embedded in the plates. The test results indicate that the heat-transfer coefficients for all liquids investigated may be determined from the relationship Nu=0.069Ra13Pr0.074 In this equation the Nusselt and Rayleigh numbers are based on the distance between the copper plates. The results of this experiment are in reasonable agreement with the data reported by others who used larger containers and different fluids.


Sign in / Sign up

Export Citation Format

Share Document