HAWT Rotor Design and Performance Analysis

Author(s):  
Emrah Kulunk ◽  
Nadir Yilmaz

In this paper, a design method based on blade element momentum (BEM) theory is explained for horizontal-axis wind turbine (HAWT) blades. The method is used to optimize the chord and twist distributions of the blades. Applying this method a 100kW HAWT rotor is designed. Also a computer program is written to estimate the aerodynamic performance of the existing HAWT blades and used for the performance analysis of the designed 100kW HAWT rotor.

Author(s):  
Emrah Kulunk ◽  
Nadir Yilmaz

In this paper, a design method based on blade element momentum (BEM) theory is explained for horizontal-axis wind turbine (HAWT) blades. The method is used to optimize the chord and twist distributions of the blades. Applying this method a 100kW HAWT rotor is designed. Also a computer program is written to estimate the aerodynamic performance of the existing HAWT blades and used for the performance analysis of the designed 100kW HAWT rotor.


2019 ◽  
Vol 8 (3) ◽  
pp. 3390-3400

In the present study, Blade Element Momentum theory (BEMT) has been implemented to heuristically design a rotor blade for a 2kW Fixed Pitch Fixed Speed (FPFS) Small Scale Horizontal Axis Wind Turbine (SSHAWT). Critical geometrical properties viz. Sectional Chord ci and Twist distribution θTi for the idealized, optimized and linearized blades are analytically determined for various operating conditions. Results obtained from BEM theory demonstrate that the average sectional chord ci and twist distribution θTi of the idealized blade are 20.42% and 14.08% more in comparison with optimized blade. Additionally, the employment of linearization technique further reduced the sectional chord ci and twist distribution θTi of the idealized blade by 17.9% and 14% respectively, thus achieving a viable blade bounded by the limits of economic and manufacturing constraints. Finally, the study also reveals that the iteratively reducing blade geometry has an influential effect on the solidity of the blade that in turn affects the performance of the wind turbine.


2012 ◽  
Vol 608-609 ◽  
pp. 775-780
Author(s):  
De Tian ◽  
Shuo Ming Dai ◽  
Si Liu ◽  
Ning Bo Wang

Effects of tip losses, hub losses, amended attack angle, and amended thrust coefficient are taken into consideration to analyze aerodynamic performance of wind turbine blades based on the blade element momentum (BEM) theory. Based on amended calculation of BEM theory, a program code is developed by software named Matlab. Using a 1500kW wind turbine as an example, aerodynamic information, performance coefficients and blade load distributions are calculated. Compared with the well-known international wind power design software called Garrad Hassan (GH) Bladed, the results have good consistency, which further verifies amendments to the model algorithms and accuracy of the calculation. As a result, the amended calculation of BEM theory can reflect blade aerodynamic performance characteristics under actual operating condition, which has good reference and practicality for the wind turbine design and evaluation.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Maryam Refan ◽  
Horia Hangan

The aerodynamic performance of an upwind, three-bladed, small horizontal axis wind turbine (HAWT) rotor of 2.2 m in diameter was investigated experimentally and theoretically in order to assess the applicability of the blade element momentum (BEM) theory for modeling the rotor performance for the case of small HAWTs. The wind turbine has been tested in the low and high speed sections of the Boundary Layer Wind Tunnel 2 (BLWT2) at the University of Western Ontario (UWO) in order to determine the power curve over a wide range of wind speeds. Afterward, the BEM theory has been implemented to evaluate the rotor performance and to investigate three-dimensionality effects on power prediction by the theory. Comparison between the theoretical and experimental results shows that the overall prediction of the theory is within an acceptable range of accuracy. However, the BEM theory prediction for the case of small wind turbines is not as accurate as the prediction for larger wind turbines.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Ali Khanjari ◽  
Ali Sarreshtehdari ◽  
Esmail Mahmoodi

In this study, the analysis of energy and exergy of a horizontal axis wind turbine based on blade element momentum (BEM) theory is presented. The computations are validated against wind tunnel data measured in the MEXICO wind turbine experiment. Blade roughness as one of the important environmental parameters is considered in the computations. Results show that the blade element momentum (BEM) theory has good ability to predict the energy and exergy efficiencies. The computation of energy and exergy exhibits that with the increasing the roughness from 0 mm to 0.5 mm, 2324 W of the output power is reduced. Roughness of 0.5 mm at the wind speed of 16 m/s reduced exergy and energy efficiencies 5.75% and 5.83%, respectively. It is also found that the roughness in the first four months of the operation has a more negative effect on the wind turbine performance.


Author(s):  
Stavros N. Leloudas ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

The Blade Element Momentum (BEM) theory is nowadays the cornerstone of the horizontal axis wind turbine design, as its application allows for the accurate aerodynamic simulation and power output prediction of wind turbine rotors in a remarkably short period of time. Therefore, efforts have been made for the extension of the classic BEM theory to the performance analysis of Diffuser Augmented Wind Turbines (DAWTs) as well. In this study, the development and assessment of such an in-house BEM code are presented. The proposed computational model is based on the modification of the momentum part of the classical BEM theory; thus, it is capable to account for the diffuser’s effect on the calculation of the axial and tangential induction factors, through the utilization of the velocity speed-up distribution over the rotor plane of the unloaded diffuser. Furthermore, a detailed Glauert’s correction model, which employs Buhl’s modification, specially tailored for the DAWT case is included, to deal with the high values of the axial induction factor. The accuracy of the model is assessed against numerical and experimental results available in the literature, while the impact of the Prandtl’s tip loss correction model on the rotor’s predicted power output is also examined.


Sign in / Sign up

Export Citation Format

Share Document