The Environmental and Economic Impact of IGCC in China, With Comparison to Alternative Options

Author(s):  
Zupan Hu ◽  
Joseph W. Pratt

The goal of this study is to evaluate the economic and environmental performance of power plants based on integrated gasification combined cycle (IGCC) technology, and to compare it with currently relevant renewable and nuclear power generation options in China, until the year 2020. First, electricity demand is predicted, based on up-to-date policies made by Chinese government organizations. From this, a business as usual (BAU) study, in which coal-fired power plant technology is assumed to be unchanged from 2010 to 2020, is carried out as a reference. Different scenarios of IGCC technology adoption are then studied using a newly developed model, and the result show, for example, that there could be 10.05 billion tons of CO2 emission avoided from 2010 to 2020 if 50% of newly built coal-fired plants are based on IGCC technology with CO2 capture. When compared with other options, the cost of avoided CO2 emissions in this scenario is more expensive than hydroelectric, nuclear, and wind, but cheaper than solar (thermal and photovoltaic). The results also show that IGCC, although more expensive, could still be important in China’s coal-dominated electricity industry.

1994 ◽  
Vol 116 (2) ◽  
pp. 300-306 ◽  
Author(s):  
G. Tsatsaronis ◽  
L. Lin ◽  
T. Tawfik ◽  
D. T. Gallaspy

In a study supported by the U. S. Department of Energy, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. This design configuration uses an air-blown KRW gasifier, hot gas cleanup, and two General Electric MS7001F advanced combustion turbines. Operation at three different gasification temperatures was considered. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. These changes include the following: decreasing the gasifier operating temperature, enhancing the high-pressure steam generation in the gasification island, improving the efficiency of the steam cycle, and redesigning the entire heat exchanger network. Based on the cost information supplied by the M. W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components.


2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


Author(s):  
Ashok K. Anand ◽  
Jeff Parmar ◽  
David L. Breton ◽  
Patrick Le

Integrated Gasification Combined Cycle (IGCC) utilizing solid and unconventional liquid fuels has now reached commercial stage as evidenced by their world wide construction and successful operation. The proposed ASME Performance Test Code 47 (PTC47) provides the users and owners of these new power plants, the guidance and procedures on conducting a performance test and evaluate the deviation from the performance guarantees. This paper reports the use of PTC47 codes in evaluating the test correction factors for the Wabash River IGCC Power Plant.


Author(s):  
Nikolett Sipo¨cz ◽  
Mohammad Mansouri ◽  
Peter Breuhaus ◽  
Mohsen Assadi

As part of the European Union (EU) funded H2-IGCC project this work presents the establishment of a baseline Integrated Gasification Combined Cycle (IGCC) power plant configuration under a new set of boundary conditions such as the combustion of undiluted hydrogen-rich syngas and high fuel flexibility. This means solving the problems with high NOx emitting diffusion burners, as this technology requires the costly dilution of the syngas with high flow rates of N2 and/or H2O. An overall goal of the project is to provide an IGCC configuration with a state-of-the-art (SOA) gas turbine (GT) with minor modifications to the existing SOA GT and with the ability to operate on a variety of fuels (H2-rich, syngas and natural gas) to meet the requirements of a future clean power generation. Therefore a detailed thermodynamic analysis of a SOA IGCC plant based on Shell gasification technology and Siemens/Ansaldo gas turbine with and without CO2 capture is presented. A special emphasis has been dedicated to evaluate at an intermediate stage of the project the GT performance and identify current technical constraints for the realization of the targeted fuel flexibility. The work shows that introduction of the low calorific fuel (H2 rich fuel more than 89 mol% H2) has rather small impact on the gas turbine from the system level study point of view. The study has indicated that the combustion of undiluted syngas has the potential of increasing the overall IGCC efficiency.


Sign in / Sign up

Export Citation Format

Share Document