Numerical Analysis of Total Energy Storage of Nanofluidized Heat Transfer Fluid in Thermocline Thermal Energy Storage System

Author(s):  
Nazmul Hossain ◽  
Samia Afrin ◽  
Jesus D. Ortega ◽  
Vinod Kumar ◽  
Debjyoti Banerjee

Thermal energy storage (TES), when combined with a concentrating solar power (CSP) plant has potential to produce electricity at a cost-competitive rate to traditional sources of electricity production. In single tank TES system both the hot fluid and cold fluid settle in the same tank. The region of contact of these two fluids is called thermocline. Preservation of this thermocline region in the cylindrical tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. So to maintain this thermocline region, a pipe flow distributor was placed near the inlet and outlet of the cylindrical tank. To optimize the efficiency of this single tank TES system is to increase the thermo-physical properties of heat transfer fluid. This addition will result in harnessing solar energy by increasing thermal efficiency of the thermodynamic cycles. Adding of nanoparticles, in the heat transfer fluid give rise of this thermo-physical properties i.e. thermal conductivity (k) and specific heat capacity (Cp). Hitec® molten salt is used as the base-fluid and synthesized with five different types of nanoparticles (SiO2, Al2O3, Fe3O4, ZnO and Ag) with different concentrations. The values of effective k and Cp are calculated for the new Hitec® nanofluid. The doping of nano-particles results in higher k and Cp when compared to the base fluid. Higher Cp is expected to improve the thermal storage capacity but higher value of k is expected to increase the thermal diffusivity, thereby affecting the performance of the thermocline. The diffusivity depends on the ratio of k to Cp and density of the effective properties. So there is a need to balance the effective properties to improve thermal storage performance. The total energy storage capacity is then checked by finite volume based computational fluid dynamics software. The simulation shows how the performance of the nanofluid changes at different concentrations in a single tank TES system during its charging-discharging cycle.

Author(s):  
Emerson E. John ◽  
W. Micah Hale ◽  
R. Panneer Selvam

In recent years due to rising energy costs as well as an increased interest in the reduction of greenhouse gas emissions, there is great interest in developing alternative sources of energy. One of the most viable alternative energy resources is solar energy. Concentrating solar power (CSP) technologies have been identified as an option for meeting utility needs in the U.S. Southwest. Areas where CSP technologies can be improved are improved heat transfer fluid (HTF) and improved methods of thermal energy storage (TES). One viable option for TES storage media is concrete. The material costs of concrete can be very inexpensive and the costs/ kWhthermal, which is based on the operating temperature, are reported to be approximately $1. Researchers using concrete as a TES storage media have achieved maximum operating temperatures of 400°C. However, there are concerns for using concrete as the TES medium, and these concerns center on the effects and the limitations that the high temperatures may have on the concrete. As the concrete temperature increases, decomposition of the calcium hydroxide (CH) occurs at 500°C, and there is significant strength loss due to degeneration of the calcium silicate hydrates (C-S-H). Additionally concrete exposed to high temperatures has a propensity to spall explosively. This proposed paper examines the effect of heating rates on high performance concrete mixtures. Concrete mixtures with water to cementitious material ratios (w/cm) of 0.15 to 0.30 and compressive strengths of up to 180 MPa (26 ksi) were cast and subjected to heating rates of 3, 5, 7, and 9° C/min. These concrete mixtures are to be used in tests modules where molten salt is used as the heat transfer fluid. Molten salt becomes liquid at temperatures exceeding 220°C and therefore the concrete will be exposed to high initial temperatures and subsequently at controlled heating rates up to desired operating temperatures. Preliminary results consistently show that concrete mixtures without polypropylene fibres (PP) cannot resist temperatures beyond 500° C, regardless of the heating rate employed. These mixtures spall at higher temperatures when heated at a faster rate (7° C/min). Additionally, mixtures which incorporate PP fibres can withstand temperatures up to 600° C without spalling irrespective of the heating rate.


2019 ◽  
Vol 3 (4) ◽  
pp. 88 ◽  
Author(s):  
Maria K. Koukou ◽  
George Dogkas ◽  
Michail Gr. Vrachopoulos ◽  
John Konstantaras ◽  
Christos Pagkalos ◽  
...  

A small-scale latent heat thermal energy storage (LHTES) unit for heating applications was studied experimentally using an organic phase change material (PCM). The unit comprised of a tank filled with the PCM, a staggered heat exchanger (HE) for transferring heat from and to the PCM, and a water pump to circulate water as a heat transfer fluid (HTF). The performance of the unit using the commercial organic paraffin A44 was studied in order to understand the thermal behavior of the system and the main parameters that influence heat transfer during the PCM melting and solidification processes. The latter will assist the design of a large-scale unit. The effect of flow rate was studied given that it significantly affects charging (melting) and discharging (solidification) processes. In addition, as organic PCMs have low thermal conductivity, the possible improvement of the PCM’s thermal behavior by means of nanoparticle addition was investigated. The obtained results were promising and showed that the use of graphite-based nanoplatelets improves the PCM thermal behavior. Charging was clearly faster and more efficient, while with the appropriate tuning of the HTF flow rate, an efficient discharging was accomplished.


2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Alejandro Calderón ◽  
Camila Barreneche ◽  
Anabel Palacios ◽  
Mercè Segarra ◽  
Cristina Prieto ◽  
...  

2016 ◽  
Author(s):  
Qasim A. Ranjha ◽  
Nasser Vahedi ◽  
Alparslan Oztekin

Thermal energy storage by reversible gas-solid reaction has been selected as a thermochemical energy storage system. Simulations are conducted to investigate the dehydration of Ca(OH)2 and the hydration of CaO for thermal energy storage and retrieval, respectively. The rectangular packed bed is heated indirectly by air used as a heat transfer fluid (HTF) while the steam is transferred through the upper side of the bed. Transient mass transport and heat transfer equations coupled with chemical kinetics equations for a two dimensional geometry have been solved using finite element method. Numerical results have been validated by comparing against results of previous measurements and simulations. The effect of geometrical and operational parameters including the material properties on overall storage and retrieval process has been investigated. The co-current and counter-current flow arrangements for steam and heat transfer fluid have been considered.


Author(s):  
Russell Muren ◽  
Diego A. Arias ◽  
Brian Luptowski

Sizing and cost models were developed for thermal energy storage (TES) systems utilizing cascaded phase change materials (PCM) as the storage media in a variety of configurations. The sizing model is based on an energy balance around a characteristic fundamental element of the system, consisting of a steel pipe embedded in a matrix of phase change material. Due to the transient behavior PCM system, the sizing model requires time and space integrations. The model accounts for decreases in thermal performance caused by precipitate formation on the surface of the pipe and predicts the resulting transient power output. The model calculates the required tank and pipe sizes, the amounts of heat transfer fluid and PCM, as well as the land area for the configuration. Using a cost metric approach, the cost of each system component is estimated. Furthermore, the effect of several technological pitfalls, including: pinch point heat transfer, precipitate buildup, and transient energy output have been investigated. Prices are shown to depend heavily on system configuration. Specifically, prices are shown to be most dependent on precipitate formation during discharge and consequently the size of the necessary heat transfer area of heat exchangers. The cost of different configurations vary from $40/kWh to $100/kWh.


Author(s):  
Louis A. Tse ◽  
Reza Baghaei Lakeh ◽  
Richard E. Wirz ◽  
Adrienne S. Lavine

In this work, energy and exergy analyses are applied to a thermal energy storage system employing a storage medium in the two-phase or supercritical regime. First, a numerical model is developed to investigate the transient thermodynamic and heat transfer characteristics of the storage system by coupling conservation of energy with an equation of state to model the spatial and temporal variations in fluid properties during the entire working cycle of the TES tank. Second, parametric studies are conducted to determine the impact of key variables (such as heat transfer fluid mass flow rate and maximum storage temperature) on both energy and exergy efficiencies. The optimum heat transfer fluid mass flow rate during charging must balance exergy destroyed due to heat transfer and exergy destroyed due to pressure losses, which have competing effects. Similarly, the optimum maximum storage fluid temperature is evaluated to optimize exergetic efficiency. By incorporating exergy-based optimization alongside traditional energy analyses, the results of this study evaluate the optimal values for key parameters in the design and operation of TES systems, as well as highlight opportunities to minimize thermodynamic losses.


1999 ◽  
Vol 121 (4) ◽  
pp. 185-193 ◽  
Author(s):  
Kang Yanbing ◽  
Zhang Yinping ◽  
Jiang Yi ◽  
Zhu Yingxin

The present study describes and classifies latent heat thermal energy storage (LHTES) systems according to their structural characteristics. A general model is developed for analyzing the thermal characteristics of the various typical LHTES systems to simulate thermal characteristics such as instantaneous heat transfer rate, instantaneous thermal storage capacity, etc. of the various typical LHTES systems. The model can calculate some important but difficult to measure system parameters for monitoring the charging or discharging processes of the systems. The model is verified using experimental data in the literature. Results from the model can be used to discuss the influence of the characteristic geometric parameters of LHTES units, the physical properties of the phase change material (PCM), the flow type and the velocity of heat transfer fluid (HTF) on the system thermal performance and to identify the key factors influencing the system thermal performance. The general model can be used to select and optimize the system structure and to simulate the thermal behavior of various typical LHTES systems.


Author(s):  
P. C. Bueno ◽  
L. Bates ◽  
R. Anderson ◽  
H. Bindra

This paper examines the operation of a simple sensible thermal energy storage (TES) unit for use in concentrated solar power (CSP) plant applications using supercritical CO2 (sCO2) as the heat transfer fluid. The heat transfer characteristics of the system are described and it is shown that an advancing heat front, with a very high temperature gradient, is achieved through proper design. Typical charge and discharge times of 6 hours are studied to show how this method can be used in practical applications. It is shown that the TES can be effectively matched to a conceptual CSP plant to allow it to operate at night or during periods of reduced sunlight.


2019 ◽  
Author(s):  
Kelly Osterman ◽  
Diego Guillen ◽  
D. Yogi Goswami

Abstract This paper numerically explores a high-temperature sensible-latent hybrid thermal energy storage system designed to store heat with output temperatures stabilized at approximately 550–600 °C for direct coupling with supercritical carbon dioxide (sCO2) power cycles operating at their design point. sCO2 and dry air at 25 MPa are used as heat transfer fluid (HTF) in a packed bed storage system that combines rocks as sensible heat storage and AlSi12 as latent heat storage. The base model using dry air at atmospheric pressure is compared to similar work done at ETH Zurich; the model is then extended for use with sCO2 to compare the performance of air and sCO2 at similar volumetric flow rates. It was found that sCO2 is capable of storing a significantly larger amount of energy (∼40 kWh) in the same time period as the air system (∼19 kWh), and can discharge that energy much quicker (1.5 hours compared to 4 hours). However, in order to achieve similar degrees of temperature stabilization, the total height of PCM had to be increased significantly, from 9 cm to 45 cm or more.


Sign in / Sign up

Export Citation Format

Share Document