Techno-Economic Assessment of Different Pathways for Utilizing Glycerol Derived From Waste Cooking Oil-Based Biodiesel

Author(s):  
Shwe Sin Win ◽  
Swati Hegde ◽  
Thomas A. Trabold

Crude (i.e., unrefined) glycerol is the major by-product of biodiesel production, based on the homogeneous alkaline catalytic transesterification reaction. Currently, global biodiesel production capacity has been rising rapidly due to the overall growth of renewable energy demand. The amount of glycerol is increasing in parallel, and there is presently little market value for crude glycerol. In addition, disposing of this material via conventional methods becomes one of the major environmental issues and a burden for biodiesel manufacturers. Thus, utilization of purified glycerol in value-added applications such as food processing, cosmetics, soap and pharmaceuticals is critical to achieve economic scale of biodiesel production. In this paper, various pathways available to community-based biodiesel producers have been modeled to inform the decision-making process. A case study at Rochester Institute of Technology (RIT) was selected to evaluate the proposed system. Different pathways of utilizing crude glycerol were investigated, and economic feasibility of each pathway was analyzed. Purification of crude glycerol from waste cooking oil-based-biodiesel production was performed at small bench scale. Various recipes with different raw materials and purified glycerol as an ingredient were created for different kinds of saponification processes and applications. The resulting data from this preliminary assessment showed that producing biodiesel and high-quality soap is the most profitable option for RIT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azhar Najjar ◽  
Elhagag Ahmed Hassan ◽  
Nidal Zabermawi ◽  
Saber H. Saber ◽  
Leena H. Bajrai ◽  
...  

AbstractIn this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm−1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.


2016 ◽  
Vol 26 ◽  
pp. 217-226 ◽  
Author(s):  
Mohammed Noorul Hussain ◽  
Tala Al Samad ◽  
Isam Janajreh

2019 ◽  
Vol 1 (1) ◽  
pp. 27-33
Author(s):  
D.U.M. Susilo ◽  
Th. Candra Wasis A.S. ◽  
Zakwan .

The using of biodiesel as an environmentally friendly fuel has received attention from consumers to producers. So, a lot of research was done on the potential raw material to become biodiesel. One of the raw materials for biodiesel was waste cooking oil. Pontianak City have many sources including waste cooking oil from restaurants. Therefore restaurants in the city of Pontianak might be used as suppliers of waste cooking oil in biodiesel production. This study aims to determine the priority of criteria and sub-criteria for restaurants as suppliers and determine good restaurants as suppliers of used cooking in Pontianak City . Purposive technique sampling using a sample of 61 house dining, interviewed to obtain alternative data suppliers. Expert survey questionnaire contains priority weighting of criteria and supplier criteria, analyzed using AHP ( Analytic Hierarchy Process ). Grouping of restaurants based on alternative supplier values ​​is used to determine good restaurants to be suppliers. The priority criteria for restaurants as consecutive suppliers are experience (0.289), quality (0.279), capacity (0.231), service (0.148) and price (0.053). Sub-criteria priority of restaurants as suppliers in a row is the time span of used cooking oil sold(0.161), length of time used cooking oil (0.155), income (0.129), type of cooking oil (0.107), type of fried food products (0.092), volume of cooking oil (0.090), frying volume (0.085), transaction convenience (0.082), subject to used cooking oil (0.056), used cooking oil price (0.030) and ease of payment (0.013). A value of ≥ 0.325 is a dining value that shows a very better priority as a supplier. The number of restaurants as suppliers is 8 % of the population of restaurants in the city of Pontianak..


Author(s):  
Daniela Y. Sugai ◽  
José V. C. Vargas ◽  
Wellington Balmant ◽  
Priscila P. Dario ◽  
Leonardo C. Martinez ◽  
...  

Abstract Waste cooking oil and microalgae oil could become alternative raw materials for biodiesel production in the global quest for energetic sustainability. However, the technical and economic viability of the biodiesel production process from these alternative sources has not been fully investigated yet, within the knowledge of the authors. Therefore, the main objective of this study is to carry out an exergetic and economical analysis of the biodiesel production process from blends of waste cooking oil and microalgae oil. Initially, the mass, energy and exergy balances of the process of the biodiesel production was conducted. Then, an optimization procedure was executed with the selected objective functions. The results showed that it is possible to optimize the process as a function of the ratio of destroyed exergy system by the amount of ester produced, generating a profit of $ 29.50 per second, for an ratio of oil/ethanol of 3.7/1. In conclusion, the proposed model can also be used in the future for performing the exergoeconomic optimization of biodiesel production processes from blends of waste cooking oil and microalgae oil, aiming at achieving process sustainability.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 914 ◽  
Author(s):  
Yang ◽  
Zhang

Enzymatic production of biodiesel from waste cooking oil (WCO) could contribute to resolving the problems of energy demand and environment pollutions.In the present work, Burkholderia cepacia lipase (BCL) was activated by surfactant imprinting, and subsequently immobilized in magnetic cross-linked enzyme aggregates (mCLEAs) with hydroxyapatite coated magnetic nanoparticles (HAP-coated MNPs). The maximum hyperactivation of BCL mCLEAs was observed in the pretreatment of BCL with 0.1 mM Triton X-100. The optimized Triton-activated BCL mCLEAs was used as a highly active and robust biocatalyst for biodiesel production from WCO, exhibiting significant increase in biodiesel yield and tolerance to methanol. The results indicated that surfactant imprinting integrating mCLEAs could fix BCL in their active (open) form, experiencing a boost in activity and allowing biodiesel production performed in solvent without further addition of water. A maximal biodiesel yield of 98% was achieved under optimized conditions with molar ratio of methanol-to-WCO 7:1 in one-time addition in hexane at 40 °C. Therefore, the present study displays a versatile method for lipase immobilization and shows great practical latency in renewable biodiesel production.


Konversi ◽  
2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Cindi Ramayanti ◽  
Sarah Dampang

The production costs of biodiesel based on vegetable oil is not economical, so it is difficult for biodiesel to compete with petrodiesel. Waste cooking oil can be used as a source of raw materials for biodiesel production. This research aims to produce biodiesel from waste cooking oil. The initial stage is to pretreatment of waste cooking oil. At this step, the waste cooking oil is filtered to separate impurities from the raw material. After that, it is heated to 100 oC to remove the water content. The second stage is transesterification. At this stage, the reaction time remains for one hour at a temperature of 65 oC. the product is centrifuged to separate the catalyst. The highest yield was obtained in the 12: 1 molar ratio variable and the amount of catalyst 3%, which was 0.922. Yield obtained ranged from 0.853-0.922. An increase in the molar ratio is significant enough to increase the amount of yield. However, increasing the amount of catalyst especially from 2% to 3% is not significant enough to increase biodiesel yield. The characteristics of biodiesel produced are in accordance with SNI Biodiesel, density 870 Kg / cm3, viscosity 4.25 cSt, flash point 170, and acid number 0.4 mg-KOH/g biodiesel.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Author(s):  
Shahabaldin Rezania ◽  
Zahra Sotoudehnia Korrani ◽  
Mohammad Ali Gabris ◽  
Jinwoo Cho ◽  
Krsihna Kumar Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document