scholarly journals Development in Paraffin Based Thermal Storage System Through Shell and Tubes Heat Exchanger With Vertical Fins

Author(s):  
Zakir Khan ◽  
Zulfiqar Ahmad Khan

Researchers are committed to develop robust and responsive technologies for renewable energy sources to avert from reliance on fossil fuels, which is the main cause of global warming and climate change. Solar energy based renewable energy technologies are valued as an important substitute to bridge gap between energy demand and generation. However, due to varying and inconsistent nature of solar energy during weather fluctuations, seasonal conditions and night times, the complete utilisation of technology is not guaranteed. Therefore, thermal energy storage (TES) system is considered as an imperative technology to be deployed within solar energy systems or heat recovery systems to maximise systems efficiency and to compensate for varying thermal irradiance. TES system can capture and store the excess amount of thermal energy during solar peak hours or recover from systems that would otherwise discard this excess amount of thermal energy. This stored energy is then made available to be utilised during solar off peak hours or night times. Phase change material (PCM) based TES system is appraised as a viable option due to its excellent adoption to solar and heat recovery systems, higher thermal storage density and wide range of materials availability. However, due to its low thermal conductivity (≅ 0.2 W/mK), the rapid charging and discharging of TES system is a challenge. Therefore, there is a need for efficient and responsive heat exchange mechanism to boost the heat transfer within PCM. In this study, transient analysis of two-dimensional computational model of vertical shell and tube based TES system is conducted. Commercial grade paraffin (RT44HC) is employed in shell as thermal storage material due to its higher thermal storage density, thermo-physical stability and compatibility with container material. Water is made to flow in tubes as heat transfer fluid. In this numerical study, the parametric investigations are performed to determine the enhancement in charging rate, discharging rate and thermal storage capacity of TES system. The parametric investigations involve geometrical orientations of tubes in shell with and without fins, inlet temperature and volume flow rate of HTF. It is evident from numerical results that due to increase in effective surface area for heat transfer by vertical fins, the charging and discharging rate of paraffin based TES system can be significantly increased. Due to inclusion of vertical fins, conduction heat transfer is dominant mode of heat transfer in both charging and discharging processes. Furthermore, vertical fins do not restrict natural convection or buoyancy driven flow as compared to horizontal fins. Similarly, the inlet temperature has a noticeable impact on both charging and discharging process. In melting process, the sensible enthalpy is boosted due to rise in inlet temperature and thus the whole system thermal storage capacity is enhanced. Likewise, the effect of volume flow rate of HTF on charging and discharging rate is moderate as compared to inlet temperature of HTF. The numerical results are validated by experimental results. To conclude, these findings present an understanding into how to increase charging and discharging rate of TES system so as to provide feasible design solutions for widespread domestic and commercial utilisation of TES technology.

Author(s):  
Hussein Maghrabie ◽  
Hamouda Mousa

Abstract Recent progress in nanotechnology has lead to a revolution in the automotive cooling system. In the present work, enhancement of car radiator thermal performance was investigated using different nanofluids named SiO2/water, ZnO/water nanofluids as cooling mediums. The present study mainly aims to investigate the impact of (5 wt.%) from SiO2 and ZnO nanoparticles (NPs) dispersed in water based on car radiator heat transfer with spherical and hexagonal morphology, respectively. The experiments were performed in two working conditions of the nanofluids i.e coolant temperature and volume flow rate, moreover the present results were compared with the previous studies. The experimental working conditions were set at coolant inlet temperature (tc,i) ranged from 45 oC to 80 oC and the coolant volume flow rate (V) ranged from 3.5 lit/min to 6.5 lit/min. The experimental results show that the hexagonal ZnO/water nanofluid was superior towards enhancement of car radiator thermal performance comparing to that of SiO2 NPs. Additionally, at 6.5 lit/min and 45 °C, the enhancements of car radiator effectiveness due to using SiO2 and ZnO based water nanofluids and compared with that for the based water were 13.9% and 16%, respectively. The present study used the multiple regression analysis (MRA) and hence empirical correlations are suggested to estimate the overall heat transfer coefficient (U) for all coolants as functions of volume flow rate (V) and the coolant inlet temperature (tc,i) with a maximum STDEV of ± 1.85%.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 121
Author(s):  
Liu Liu ◽  
Jianlei Niu ◽  
Jian-Yong Wu

Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Sarada Kuravi ◽  
Jamie Trahan ◽  
Yogi Goswami ◽  
Chand Jotshi ◽  
Elias Stefanakos ◽  
...  

A high-temperature, sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory-scale TES prototype system, and the results are presented. The air inlet temperature was varied between 300 °C to 600 °C, and the flow rate was varied from 50 cubic feet per minute (CFM) to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed-bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter, and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency, and capacity ratio of the system.


Author(s):  
Nazmul Hossain ◽  
Samia Afrin ◽  
Jesus D. Ortega ◽  
Vinod Kumar ◽  
Debjyoti Banerjee

Thermal energy storage (TES), when combined with a concentrating solar power (CSP) plant has potential to produce electricity at a cost-competitive rate to traditional sources of electricity production. In single tank TES system both the hot fluid and cold fluid settle in the same tank. The region of contact of these two fluids is called thermocline. Preservation of this thermocline region in the cylindrical tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. So to maintain this thermocline region, a pipe flow distributor was placed near the inlet and outlet of the cylindrical tank. To optimize the efficiency of this single tank TES system is to increase the thermo-physical properties of heat transfer fluid. This addition will result in harnessing solar energy by increasing thermal efficiency of the thermodynamic cycles. Adding of nanoparticles, in the heat transfer fluid give rise of this thermo-physical properties i.e. thermal conductivity (k) and specific heat capacity (Cp). Hitec® molten salt is used as the base-fluid and synthesized with five different types of nanoparticles (SiO2, Al2O3, Fe3O4, ZnO and Ag) with different concentrations. The values of effective k and Cp are calculated for the new Hitec® nanofluid. The doping of nano-particles results in higher k and Cp when compared to the base fluid. Higher Cp is expected to improve the thermal storage capacity but higher value of k is expected to increase the thermal diffusivity, thereby affecting the performance of the thermocline. The diffusivity depends on the ratio of k to Cp and density of the effective properties. So there is a need to balance the effective properties to improve thermal storage performance. The total energy storage capacity is then checked by finite volume based computational fluid dynamics software. The simulation shows how the performance of the nanofluid changes at different concentrations in a single tank TES system during its charging-discharging cycle.


Author(s):  
Reza Baghaei Lakeh ◽  
Adrienne S. Lavine ◽  
H. Pirouz Kavehpour ◽  
Gani B. Ganapathi ◽  
Richard E. Wirz

Heat transfer to the storage fluid is a critical subject in thermal energy storage systems. The storage fluids that are proposed for supercritical thermal storage system are organic fluids that have poor thermal conductivity; therefore, pure conduction will not be an efficient heat transfer mechanism for the system. The current study concerns a supercritical thermal energy storage system consisting of horizontal tubes filled with a supercritical fluid. The results of this study show that the heat transfer to the supercritical fluid is highly dominated by natural convection. The buoyancy-driven flow inside the storage tubes dominates the flow field and enhances the heat transfer dramatically. Depending on the diameter of the storage tube, the buoyancy-driven flow may be laminar or turbulent. The natural convection has a significant effect on reducing the charge time compared to pure conduction. It was concluded that although the thermal conductivity of the organic supercritical fluids are relatively low, the effective laminar or turbulent natural convection compensates for this deficiency and enables the supercritical thermal storage to charge effectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
A.M. Abd-Alla ◽  
S.M. Abo-Dahab ◽  
M.A. Abdelhafez ◽  
Esraa N. Thabet

PurposeThis article aims to describe the effect of an endoscope and heat transfer on the peristaltic flow of a Jeffrey fluid through the gap between concentric uniform tubes.Design/methodology/approachThe mathematical model of the present problem is carried out under long wavelength and low Reynolds number approximations. Analytical solutions for the velocity, temperature profiles, pressure gradient and volume flow rate are obtained.FindingsThe results indicate that the effect of the wave amplitude, radius ratio, Grashof number, the ratio of relaxation to retardation times and the radius are very pronounced in the phenomena. Also, a comparison of obtaining an analytical solution against previous literatures shows satisfactory agreement.Originality/valueAnalytical solutions for the velocity, temperature profiles, pressure gradient and volume flow rate are obtained. Numerical integration is performed to analyze the pressure rise and frictional forces on the inner and outer tubes.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6193
Author(s):  
Mohamed Fadl ◽  
Philip Eames

In this study, the thermal performance of latent heat thermal energy storage system (LHTESS) prototype to be used in a range of thermal systems (e.g., solar water heating systems, space heating/domestic hot water applications) is designed, fabricated, and experimentally investigated. The thermal store comprised a novel horizontally oriented multitube heat exchanger in a rectangular tank (forming the shell) filled with 37.8 kg of phase change material (PCM) RT62HC with water as the working fluid. The assessment of thermal performance during charging (melting) and discharging (solidification) was conducted under controlled several operational conditions comprising the heat transfer fluid (HTF) volume flow rates and inlet temperatures. The experimental investigations reported are focused on evaluating the transient PCM average temperature distribution at different heights within the storage unit, charging/discharging time, instantaneous transient charging/discharging power, and the total cumulative thermal energy stored/released. From the experimental results, it is noticed that both melting/solidification time significantly decreased with increase HTF volume flow rate and that changing the HTF inlet temperature shows large impacts on charging time compared to changing the HTF volume flow rate. During the discharging process, the maximum power output was initially 4.48 kW for HTF volume flow rate of 1.7 L/min, decreasing to 1.0 kW after 52.3 min with 2.67 kWh of heat delivered. Based on application heat demand characteristics, required power levels and heat demand can be fulfilled by employing several stores in parallel or series.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
M. Adrienne Parsons ◽  
M. Keith Sharp

This study evaluated the building cooling capacity of sky radiation, which was previously identified to have the greatest cooling potential among common ambient sources for climates across the U.S. A heat pipe augmented sky radiator system was simulated by a thermal network with nine nodes, including a thin polyethylene cover with and without condensation, white (zinc oxide) painted radiator plate, condenser and evaporator ends of the heat pipe, thermal storage fluid (water), tank wall, room, sky and ambient air. Heat transfer between nodes included solar flux and sky radiation to cover and plate, wind convection and radiation from cover to ambient, radiation from plate to ambient, natural convection and radiation from plate to cover, conduction from plate to condenser, two-phase heat transfer from evaporator to condenser, natural convection from evaporator to water and from water to tank wall, natural convection and radiation from tank wall to room, and overall heat loss from room to ambient. A thin layer of water was applied to simulate condensation on the cover. Nodal temperatures were simultaneously solved as functions of time using typical meteorological year (TMY3) weather data. Auxiliary cooling was added as needed to limit room temperature to a maximum of 23.9 °C. For this initial investigation, a moderate climate (Louisville, KY) was used to evaluate the effects of radiator orientation, thermal storage capacity, and cooling load to radiator area ratio (LRR). Results were compared to a Louisville baseline with LRR = 10 W/m2 K, horizontal radiator and one cover, which provided an annual sky fraction (fraction of cooling load provided by sky radiation) of 0.855. A decrease to 0.852 was found for an increase in radiator slope to 20 deg, and a drop to 0.832 for 53 deg slope (latitude + 15 deg, a typical slope for solar heating). These drops were associated with increases in average radiator temperature by 0.73 °C for 20 deg and 1.99 °C for 53 deg. A 30% decrease in storage capacity caused a decrease in sky fraction to 0.843. Sky fractions were 0.720 and 0.959 for LRR of 20 and 5, respectively. LRR and thermal storage capacity had strong effects on performance. Radiator slope had a surprisingly small impact, considering that the view factor to the sky at 53 deg tilt is less than 0.5.


Sign in / Sign up

Export Citation Format

Share Document