Wire-Driven Pneumatic Actuation of a New 6-DOF Haptic Master

Author(s):  
Carlo Ferraresi ◽  
Massimiliana Carello ◽  
Francesco Pescarmona ◽  
Roberto Grassi

The paper presents the results of a work carried out by the Department of Mechanics of Politecnico di Torino, concerning the study and development of a six degrees of freedom force reflecting master structure for teleoperation (haptic device) to be controlled by an operator. The latter imposes the six-dimensional linear and angular displacement of a handle, controlling a remote slave robot or interacting with virtual reality. On the other hand, the operator receives a force feedback related to the environment in which the slave robot or virtual device operates. Since the actuators must be force controlled in order to generate a resultant corresponding to the desired wrench, pneumatic actuation has been chosen because it is particularly suitable to the application and quite economical.

Author(s):  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Eder Govea ◽  
Raquel Espinosa-Castañeda ◽  
Enrique Gallegos

The technological growth in the last years have conducted to the development of virtual reality (VR) systems able to immerse the user into a three-dimensional (3D) virtual environment where the user can interact in real time with virtual objects. This interaction is mainly based on visualizing the virtual environment and objects. However, with the recent beginning of haptic systems, the interaction with the virtual world has been extended to also feel, touch and manipulate virtual objects. Virtual reality has been successfully used in the development of applications in different scientific areas ranging from basic sciences, social science, education and entertainment. On the other hand, the use of haptics has increased in the last decade in domains from sciences and engineering to art and entertainment. Despite many developments, there is still relatively little knowledge about the confluence of software, enabling hardware, visual and haptic representations, to enable the conditions that best provide for an immersive sensory environment to convey information about a particular subject domain. In this paper, the state of the art of the research work regarding virtual reality and haptic technologies carried out by the authors in the last years is presented. The aim is to evidence the potential use of these technologies to develop usable systems for analysis and simulation in different areas of knowledge. The development of three different systems in the areas of engineering, medicine and art is presented. In the area of engineering, a system for the planning, evaluation and training of assembly and manufacturing tasks has been developed. The system, named as HAMS (Haptic Assembly and Manufacturing System), is able to simulate assembly tasks of complex components with force feedback provided by the haptic device. On the other hand, in the area of medicine, a surgical simulator for planning and training orthognathic surgeries has been developed. The system, named as VOSS (Virtual Osteotomy Simulator System), allows the realization of virtual osteotomies with force feedback. Finally, in the area of art, an interactive cinema system for blind people has been developed. The system is able to play a 3D virtual movie for the blind user to listen to and touch by means of the haptic device. The development of these applications and the results obtained from these developments are presented and discussed in this paper.


2014 ◽  
Vol 8 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Ryoya Kamata ◽  
◽  
Ryosuke Tamura ◽  
Satoshi Niitsu ◽  
Hiroshi Kawaharada ◽  
...  

This paper describes a remote controlled assembly using a haptic device. Most haptic devices have six Degrees Of Freedom (DOFs) for a higher sense of reality. However, for assembly operation, the simultaneous motion of parts with only one or two DOFs is required, and force feedback to operators is used only to maintain contact and detect collisions among parts. This leads to the possibility of assembly operations using a haptic device with a small number of DOFs. In this paper, we propose virtual planes to perform remote control of a 6DOF assembly by way of 1DOF user operations. Virtual planes separate the DOFs for user operation and for automatically generated motions that complement the user operation DOF in each assembly operation. A prototype system was developed with a 6DOF manipulator and camera. The system allows an operator to place virtual planes in any position and orientation using a camera image of the workspace. The experiment results showed the effectiveness of the method for remote controlled assembly without geometry information on the parts.


Author(s):  
Manuel Rodrigues Quintas ◽  
Maria Teresa Restivo ◽  
José Rodrigues ◽  
Pedro Ubaldo

The concept and the use of haptic devices need to be disseminated and they should become familiar among young people. At present haptics are used in many everyday tasks in different fields. Additionally, their use in interaction with virtual reality applications simulating real systems sense of touch will increase the usersâ?? realism and immersion and, consequently, they will contribute to improve the intrinsic knowledge to the simulationsâ?? goals. However, haptics are associated with expensive equipment and usually they offer several degrees of freedom. The objective of this work is to make their cost not much more expensive than a â??specialâ? mouse by offering a low cost solution with just one degree of freedom (1DOF) useful in many simple cases. Additionally, it is also an objective of this work the development of simple virtual reality systems requiring interactions only requiring one degree of freedom. A low cost, single-axis force-feedback haptic device of 1 degree of freedom has been developed. For evaluating the interest of this prototype a â??Spring Constantâ? application was built and used as a demonstrator. The complete system - the haptic interacting with the â??Spring Constantâ? - will be described in the present work.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


2021 ◽  
pp. 1-63
Author(s):  
Jin Lixing ◽  
Duan Xingguang ◽  
Li Changsheng ◽  
Shi Qingxin ◽  
Wen Hao ◽  
...  

Abstract This paper presents a novel parallel architecture with seven active degrees of freedom (DOFs) for general-purpose haptic devices. The prime features of the proposed mechanism are partial decoupling, large dexterous working area, and fixed actuators. The detailed processes of design, modeling, and optimization are introduced and the performance is simulated. After that, a mechanical prototype is fabricated and tested. Results of the simulations and experiments reveal that the proposed mechanism possesses excellent performances on motion flexibility and force feedback. This paper aims to provide a remarkable solution of the general-purpose haptic device for teleoperation systems with uncertain mission in complex applications.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1448 ◽  
Author(s):  
Youngwon Ryan Kim ◽  
Hyeonah Choi ◽  
Minwook Chang ◽  
Gerard J. Kim

Recently, a new breed of mobile virtual reality (dubbed as “EasyVR” in this work), has appeared in the form of conveniently clipping on a non-isolating magnifying lenses on the smartphone, still offering a reasonable level of immersion to using the isolated headset. Furthermore, such a form factor allows the fingers to touch the screen and select objects quite accurately, despite the finger(s) being seen unfocused over the lenses. Many navigation techniques have existed for both casual smartphone 3D applications using the touchscreen and immersive VR environments using the various controllers/sensors. However, no research has focused on the proper navigation interaction technique for a platform like EasyVR which necessitates the use of the touchscreen while holding the display device to the head and looking through the magnifying lenses. To design and propose the most fitting navigation method(s) with EasyVR, we mixed and matched the conventional touchscreen based and headset oriented navigation methods to come up with six viable navigation techniques—more specifically for selecting the travel direction and invoking the movement itself—including the use of head-rotation, on-screen keypads/buttons, one-touch teleport, drag-to-target, and finger gestures. These methods were experimentally compared for their basic usability and the level of immersion in navigating in 3D space with six degrees of freedom. The results provide a valuable guideline for designing/choosing the proper navigation method under different navigational needs of the given VR application.


Leonardo ◽  
2019 ◽  
Vol 52 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Kris Layng ◽  
Ken Perlin ◽  
Sebastian Herscher ◽  
Corinne Brenner ◽  
Thomas Meduri

CAVE is a shared narrative six degrees of freedom (6DoF) virtual reality experience. In 3.5 days, 1,927 people attended its premiere at SIGGRAPH 2018. Thirty participants at a time each saw and heard the same narrative from their own individual location in the room, as they would when attending live theater. CAVE set out to disruptively change how audiences collectively experience immersive art and entertainment. Inspired by the social gatherings of theater and cinema, CAVE resonated with viewers in powerful and meaningful ways. Its specific pairing of colocated audiences and physically shared immersive narrative suggests a possible future path for shared cinematic experiences.


2020 ◽  
Vol 17 (4) ◽  
pp. 91-101
Author(s):  
T.N. Soboleva ◽  

The article is devoted to the poorly studied problem of the formation of talent in the conditions of different degrees of freedom in activity and the impact on that formation of a person’s conservative and innovative semantic attitudes towards the introduction of new equipment. The main objective of the study is to describe how the conditions of different degrees of freedom in the activity are refracted with internal conditions, which are conservative and innovative semantic attitudes and various talent structures. The study was conducted on a sample of 54 qualified railway drivers using a specialized simulator which allows to simulate three degrees of freedom in the activity. The psychological analysis of the activity revealed seven abilities ensuring the implementation of the activity. Based on empirical data, the article shows that low, medium and high degrees of freedom in activity are manifested in different degrees of productivity. Conservative and innovative semantic attitudes to the introduction of new equipment do not have a significant effect on the productivity of the activity in the conditions of different degrees of freedom. Along with this, depending on the conservative and innovative semantic attitudes, different structures of talent in terms of composition and degree of integration under the conditions of different degrees of freedom in the activity are formed. On the one hand, conservative and innovative semantic attitudes act as internal determinants; on the other hand, low, medium and high degrees of freedom in the activity act as external determinants of the formation of various talent structures.


Sign in / Sign up

Export Citation Format

Share Document