Nano-Porous Substrates Reduce Beetle Attachment Force

Author(s):  
E. Gorb ◽  
N. Hosoda ◽  
S. Gorb

Traction experiments with the seven-spotted ladybird beetles Coccinella septempunctata (L.) (Coleoptera, Coccinellidae) were carried out to study the influence of surface structure on insect attachment. Force measurements were performed with tethered walking insects using a load cell force transducer. For each beetle, forces were measured on five different substrates: (1) smooth glass plate; (2) smooth solid Al2O3 (sapphire) disc; (3 – 5) porous Al2O3 discs (anodiscs, back side) with the same pore diameter (220 – 235 nm), but different porosity (28, 42 and 51%). Males (N = 10) and females (N = 10) were used in experiments (10 single runs on each surface). Additionally, inversion tests were performed after each traction force measurement. The force ranged from 0.368 to 10.370 mN in males and from 0.514 to 6.262 mN in females. In both sexes, the highest force values were obtained on the smooth glass and sapphire surfaces, where males generated considerably higher forces compared to females. On all three porous substrates, forces were significantly reduced in both males and females, and the only difference for surfaces was obtained between two extremes: anodiscs with the highest (51%) and lowest (28%) porosity. Males produced essentially lower forces than females on anodiscs samples. Experimental insects performed well and showed normal locomotion on both smooth surfaces. On all anodiscs samples, beetles usually were not able to get a grip and slid over the surface, refused to walk and came to a standstill or even turned over on their backs. When substrates were inverted to 90° and 180°, insects were still able to remain attached to both the glass and sapphire samples, but failed on anodiscs. The reduction of insect attachment on anodiscs surfaces is explained by (1) possible absorption of the secretory fluid from insect pads by porous media and (2) effect of surface roughness.

2010 ◽  
Vol 7 (52) ◽  
pp. 1571-1579 ◽  
Author(s):  
E. V. Gorb ◽  
N. Hosoda ◽  
C. Miksch ◽  
S. N. Gorb

Traction experiments with adult seven-spotted ladybird beetles Coccinella septempunctata (L.) were carried out to study the influence of surface structure on insect attachment. Force measurements were performed with tethered walking insects, both males and females, on five different substrates: (i) smooth glass plate, (ii) smooth solid Al 2 O 3 (sapphire) disc, and (iii–v) porous Al 2 O 3 discs (anodisc membranes) with the same pore diameter but different porosity. The traction force of beetles ranged from 0.16 to 16.59 mN in males and from 0.32 to 8.99 mN in females. In both sexes, the highest force values were obtained on smooth solid surfaces, where males showed higher forces than females. On all three porous substrates, forces were significantly reduced in both males and females, and the only difference within these surfaces was obtained between membranes with the highest and lowest porosity. Males produced essentially lower forces than females on porous samples. The reduction in insect attachment on anodisc membranes may be explained by (i) possible absorption of the secretion fluid from insect adhesive pads by porous media and/or (ii) the effect of surface roughness. Differences in attachment between males and females were probably caused by the sexual dimorphism in the terminal structure of adhesive setae.


2013 ◽  
Vol 24 ◽  
pp. 1360031
Author(s):  
CHUNG-LIN WU ◽  
CHING-FEN TUAN

This paper presents an approach for calibrating the force transducer on the nano universal testing machine using milligram weights. Previous research on force calibration of such a system focused on the range from 10 mN to 200 mN, ignoring forces below 10 mN. The main purpose of this study is to analyze and calculate the uncertainty of force measurements within the range from 0.2 mN to 10 mN. The ABA calibration method in accordance with OIML R111-1 is adopted to determine the uncertainty in force measurement. The results indicate that the maximum relative uncertainty of force measurement is 7.0 × 10−3 with a 95% confidence level. The investigation can be used as the basis for evaluating measurement uncertainty of the system in small force range.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Di Li ◽  
Huw Colin-York ◽  
Liliana Barbieri ◽  
Yousef Javanmardi ◽  
Yuting Guo ◽  
...  

AbstractQuantifying small, rapidly progressing three-dimensional forces generated by cells remains a major challenge towards a more complete understanding of mechanobiology. Traction force microscopy is one of the most broadly applied force probing technologies but ascertaining three-dimensional information typically necessitates slow, multi-frame z-stack acquisition with limited sensitivity. Here, by performing traction force microscopy using fast single-frame astigmatic imaging coupled with total internal reflection fluorescence microscopy we improve the temporal resolution of three-dimensional mechanical force quantification up to 10-fold compared to its related super-resolution modalities. 2.5D astigmatic traction force microscopy (aTFM) thus enables live-cell force measurements approaching physiological sensitivity.


1965 ◽  
Vol 20 (5) ◽  
pp. 1095-1097 ◽  
Author(s):  
W. A. Petersen ◽  
J. M. Brookhart ◽  
Solon A. Stone

Design, construction and performance characteristics are described for a rugged, compact, linear force transducer using strain gages as the sensing elements. The device is adaptable to a variety of weighing or force-measurement tasks in the laboratory. weight measurement; mass measurement; force transducer; weight transducer; load cell Submitted on November 13, 1964


2020 ◽  
Vol 223 (17) ◽  
pp. jeb226514 ◽  
Author(s):  
Thies H. Büscher ◽  
Martin Becker ◽  
Stanislav N. Gorb

ABSTRACTPhasmatodea (stick and leaf insects) are herbivorous insects well camouflaged on plant substrates as a result of cryptic masquerade. Also, their close association with plants has allowed them to adapt to different substrate geometries and surface topographies of the plants they imitate. Stick insects are gaining increasing attention in attachment- and locomotion-focused research. However, most studies experimentally investigating stick insect attachment have been performed either on single attachment pads or on flat surfaces. In contrast, curved surfaces, especially twigs or stems of plants, are dominant substrates for phytophagous insects, but not much is known about the influence of curvature on their attachment. In this study, by combining analysis of tarsal usage with mechanical traction and pull-off force measurements, we investigated the attachment performance on curved substrates with different diameters in two species of stick insects with different tarsal lengths. We provide the first quantitative data for forces generated by stick insects on convex curved substrates and show that the curvature significantly influences attachment ability in both species. Within the studied range of substrate curvatures, traction force decreases and pull-off force increases with increasing curvature. Shorter tarsi demonstrate reduced forces; however, tarsus length only has an influence for diameters thinner than the tarsal length. The attachment force generally depends on the number of tarsi/tarsomeres in contact, tarsus/leg orientation and body posture on the surface. Pull-off force is also influenced by the tibiotarsal angle, with higher pull-off force for lower angles, while traction force is mainly influenced by load, i.e. adduction force.


2013 ◽  
Vol 832 ◽  
pp. 39-44
Author(s):  
Chin Fhong Soon ◽  
Mohamad A. Genedy ◽  
Mansour Youseffi ◽  
Morgan C.T. Denyer

The ability of a cell to adhere and transmit traction forces to a surface reveals the cytoskeleton integrity of a cell. Shear sensitive liquid crystals were discovered with new function in sensing cell traction force recently. This liquid crystal has been previously shown to be non-toxic, linear viscoelastic and sensitive to localized exerted forces. This paper reports the possibility of extending the application of the proposed liquid crystal based cell force sensor in sensing traction forces of osteoblast-like (MG-63) and human keratinocyte (HaCaT) cell lines exerted to the liquid crystal sensor. Incorporated with cell force measurement software, force distributions of both cell types were represented in force maps. For these lowly contractile cells, chondrocytes expressed regular forces (10 – 90 nN, N = 200) around the circular cell body whereas HaCaT projected forces (0 – 200 nN, N = 200) around the perimeter of poly-hedral shaped body. These forces are associated with the organisation of the focal adhesion expressions and stiffness of the LC substrate. From the results, liquid crystal based cell force sensor system is shown to be feasible in detecting forces of both MG63 and HaCaT.


Author(s):  
Tianfa Xie ◽  
Jamar Hawkins ◽  
Yubing Sun

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaohe Zhang ◽  
Bing Gu ◽  
Cheng-Wei Qiu

AbstractHighly sensitive force measurements of a single microscopic particle with femto-Newton sensitivity have remained elusive owing to the existence of fundamental thermal noise. Now, researchers have proposed an optically controlled hydrodynamic manipulation method, which can measure the weak force of a single microscopic particle with femto-Newton sensitivity.


2020 ◽  
Vol 110 (01-02) ◽  
pp. 24-31
Author(s):  
Patrick Georgi ◽  
Ssrah Eschelbacher ◽  
Thomas Stehle ◽  
Hans-Christian Möhring

Die Prozessüberwachung spielt in der Zerspanung eine immer wichtiger werdende Rolle. So können zum Beispiel mittels Zerspankraftmessungen ökonomisch optimierte Parameter in Zerspanprozessen gefunden werden, die zu einer Verbesserung der Auslastung von Werkzeug und Maschine führen. Des Weiteren kann über die Zerspankraft auf den aktuellen Verschleißzustand der Werkzeuge im Prozess sowie auf die jeweils erreichbare Bearbeitungsgenauigkeit zurückgeschlossen werden. Für Zerspankraftmessungen gibt es eine Vielzahl an zur Verfügung stehenden Kraftmesssystemen; zum einen traditionelle Messtechnik auf Basis von Piezosensoren zur Kraftmessung und zum anderen Kraftmesstechnik auf der Basis von Dehnmessstreifen (DMS). Dieser Beitrag untersucht die Kraftaufnahme bei Fräs- und Bohrprozessen, bei denen beide Kraftmesssysteme simultan eingesetzt wurden.   Process monitoring plays an increasingly important role in machining. For example, through cutting force measurements, it is possible to find economically optimal parameters in the milling process, which lead to an improvement in the utilization of the tool and the machine. Furthermore, the cutting force can be used to deduce the state of wear of the tools in the process. There are varieties of available force measuring systems for this purpose; on the one hand, traditional measuring technology based on piezo sensors for force measurement and the other force measuring technology based on strain gauges (strain gauges). This article examines the force absorption in milling and drilling processes where both force-measuring systems were used simultaneously.


2005 ◽  
Vol 17 (4) ◽  
pp. 422-426 ◽  
Author(s):  
A. A. Argun ◽  
M. Berard ◽  
P.-H. Aubert ◽  
J. R. Reynolds

Sign in / Sign up

Export Citation Format

Share Document