scholarly journals Modelling the Heat During the Injection Stretch Blowing Moulding: Infrared Heating and Blowing Modelling

Author(s):  
Yun Mei Luo ◽  
Luc Chevalier ◽  
Françoise Utheza

Effects of temperature: initial heating conditions or self heating during the process, are very important during the injection stretch blow moulding (ISBM) process of PET bottles. The mechanical characteristics of the final products, which are mainly controlled by the final thickness and the orientation of the molecular chains, depend strongly on the process temperature. Modelling the heat transfer during the ISBM process is therefore necessary. In the first part of this paper, an experimental study is presented in order to measure the initial temperature distribution and to identify the thermal properties of the PET. An infrared camera has been used to determine the surface temperature distribution of the PET sheets which are heated by infrared (IR) lamps. The Monte Carlo method is used to identify the parameters best fit from the temperature evolution. In the second part, a thermo-viscohyperelastic model is used to predict the PET behaviour, taking into account the strain rate and temperature dependence. A finite element approach implemented in matlab is used to achieve the numerical simulation.

2012 ◽  
Vol 591-593 ◽  
pp. 750-753 ◽  
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Thi Thanh Hoi Pham

Stretch-Blow moulding (SBM) fabricate process is a well known method to produce PET bottles. During the construction procedure, PET surface temperature distribution controlled by infrared heating is the key factor about manufacture technique for the better quality of PET. This paper focuses on how to measure and estimate temperature distribution on the surface of semi-transparent polymers so that we can make sure the proper position and intensity of the infrared lamb. We use infrared camera to detect the real temperature distributions and C++ object-oriented programming to estimate the infrared radiation (IR) results by adaptive finite volume method (Adaptive FVM). The numerical results have been compared with experimental results and the consequence is satisfied. Multiple lambs’ cases and the interior temperature distribution in PET will be discussed in future.


2000 ◽  
Author(s):  
Chao-Hsin Wang ◽  
Herman F. Nied

Abstract Finite element analysis of thermoforming simulation based on isothermal as well as non-isothermal initial conditions has been applied successfully for predicating final thickness distributions. For these simulations, it is assumed that the initial sheet temperature is known and does not change significantly during forming at a rapid stretch rate. For a non-isothermal analysis, the temperature dependent material properties are necessary. In this paper sample results are presented for the so-called inverse thermoforming problem, where an initial temperature distribution is sought numerically that will result in a specific final thickness distribution. Thus, a finite element simulation is combined with an iterative algorithm to obtain inverse solutions for a thermoformed part. In this example, the required initial temperature distributions that result in a uniform final thickness are determined for a thermoformed part. It is shown that the calculated results are quite sensitive to perturbations in the specified initial temperature profile and thus the practical application of optimal temperature distributions may require high precision thermal sensors and controls. This initial temperature distribution can then be used for the determination of desired heating patterns on zone-controlled heaters of a thermoforming machine using transient heat transfer analysis.


2020 ◽  
Vol 35 (5) ◽  
pp. 471-480
Author(s):  
G. Ausias ◽  
G. Dolo ◽  
D. Cartié ◽  
F. Challois ◽  
P. Joyot ◽  
...  

Abstract A comprehensive numerical model is developed for the simulation of the laser-assisted automated tape placement process of carbon fiber/thermoplastic composites. After being heated with a laser, the thermoplastic is welded with the help of a consolidation roller onto a substrate made up of layers of tapes bonded onto one another. Under the pressure applied by the roller, the thermoplastic flows and the tape reaches its final thickness. The numerical model is developed in three sequential steps that can be used to identify the required pressure and temperature distribution to achieve a good bond. Firstly, a heat transfer simulation is performed to determine the temperature distribution into the incoming tape under the consolidation roller. Secondly, a rheological model is developed to examine the polymer flow under the roller and to obtain the pressure field. Finally, the consolidation level between the substrate and the tape is investigated through the degree of intimate contact, which is related to the processing parameters such as the roller velocity, the laser power density and the compaction force.


2021 ◽  
Vol 5 (1) ◽  
pp. 608-618
Author(s):  
Falade Kazeen Iyanda ◽  
Ismail Baoku ◽  
Gwanda Yusuf Ibrahim

In this paper, two analytical–numerical algorithms are formulated based on homotopy perturbation method and new iterative method to obtain numerical solution for temperature distribution in a thin rod over a given finite interval. The effects of different parameters such as the coefficient  which accounts for the heat loss and the diffusivity constant  are examined when initial temperature distribution  (trigonometry and algebraic functions) are considered. The error in both algorithms approaches to zero as the computational length  increases. The proposed algorithms have been demonstrated to be quite flexible, robust and accurate. Thus, the algorithms are established as good numerical tools to solve several problems in applied mathematics and other related field of sciences


1976 ◽  
Vol 16 (74) ◽  
pp. 135-149 ◽  
Author(s):  
Gorow Wakahama ◽  
Daisuke Kuroiwa ◽  
Tatsuo Hasemi ◽  
Carl S. Benson

AbstractThe formation of superimposed ice in the accumulation area of sub-polar glaciers plays an important role in the heat and mass balance of the glaciers. In order to study the process of superimposed ice formation in detail, field observations were conducted on McCall Glacier, a sub-polar glacier in Arctic Alaska. It was found that the approximate thickness of superimposed ice formed in a whole summer was 20 cm in the upper region and 30—40 cm in the lower region of the accumulation area of the glacier. This difference in thickness may be attributed to the difference in the temperature of the underlying ice and the rate of supply of melt water. The ratio of the amount of superimposed ice formed in the accumulation area from May to July in 1972 to the total amount of melt was determined. Approximately 50% of the total melt water was discharged from the glacier as run-off water, and the remainder contributed to the formation of superimposed ice.An experimental study on the artificial formation of superimposed ice was conducted in the cold laboratory to obtain the ratio of superimposed ice, that of run-off water, and that of free water suspended between snow grains, to the total amount of melt water produced in the snow. The ratios obtained in the laboratory experiment agree fairly well with those derived from the observational data on McCall Glacier.Numerical calculations were conducted to examine the relationship between the growth rate of superimposed ice, the rale of snow melting, the rate of discharge of excess melt-water, and the temperature of the underlying ice. Calculations were made in reference to both the laboratory experiment and the field observations on McCall Glacier. It was found that the predominant factors controlling the growth rate or the total amount of superimposed ice in a sub-polar glacier are the rate of supply of melt water to the snow-ice interface and the initial temperature distribution in the underlying ice. By using the present calculation, it may be possible to estimate the growth rate, the total amount of superimposed ice, and the ratio of superimposed ice to the total amount of melting in the accumulation area of any sub-polar glacier, if observational data on the initial temperature distribution in ice and the rate of snow melting at the snow surface are available.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1947-1952 ◽  
Author(s):  
Dong Jo Yang ◽  
Chang Hyun Kim ◽  
Jae Yeol Kim

Diagnosis or measurements using Infrared thermo-image hasn't been available. A quick diagnosis and thermal analysis can be possible when that kind of system is introduced to the investigation of each part. In this study, Infrared Camera, Thermo-vision 900 of AGEMA Company was used in order to investigate. Infrared Camera usually detects only Infrared wave from the light in order to illustrate the temperature distribution. Infrared diagnosis system can be applied to various the field. But the defect discrimination can be automatic or mechanization on the special shoes total inspection system. Also, it is more effective to development and composition on the shoes total inspection system. In this study, it is introduction method of special shoes nondestructive total inspection. Performance of the proposed method are shown by through thermo-Image.


Author(s):  
Pin-Chuan Chen ◽  
Michael W. Mitchell ◽  
Dimitris E. Nikitopoulos ◽  
Steven A. Soper ◽  
Michael C. Murphy

BioMEMS are compact devices that use microfabrication to miniaturize benchtop instrumentation. Due to the requirement for uniform temperature distributions over restricted areas, thermal isolation, and faster heating and cooling rates in a limited space, thermal management is a key to ensuring successful performance of BioMEMS devices. The continuous flow polymerase chain reactor (CFPCR) is a compact BioMEMS device that is used to amplify target DNA fragments using repeated thermal cycling. The temperature distribution on the backside of a micro CFPCR was measured using thermochromic liquid crystals and an infrared camera. In the liquid crystal experiment, the performance of a 5 mm thick polycarbonate micro CFPCR with thin film heaters attached directly to the bottom polycarbonate surface over each temperature zone was studied. Natural convection was used as a cooling mechanism. The temperature distribution in the renaturation zone was dependent on the positions of the feedback thermocouples in each zone. Three different thermocouple configurations were assessed and the liquid crystal images showed that a best case 3.86°C temperature difference across the zone, leading to a 20% amplification efficiency compared to a commercial thermal cycler [5]. The device was modified to improve the temperature distribution: a thinner substrate, 2 mm, reduced the thermal capacitance; grooves were micro-milled in the backside to isolate each temperature zone; and three separate copper heating stages, combining the thin film heaters with copper plates, applied uniform temperatures to each zone [10]. Infrared camera images showed that the temperature distributions were distinct and uniform with a ±0.3 °C variations in each temperature zone, improving amplification efficiency to 72%. Good thermal management for PCR amplification can’t only increase its reliability and yield efficiency, but also accelerate the entire analytical process.


Sign in / Sign up

Export Citation Format

Share Document