Lignite-Fired Combined Cycle Power Plant With ACPFBC: Concept and Thermodynamic Calculations

Author(s):  
Hans Joachim Krautz ◽  
Rolf Chalupnik ◽  
Franz Stuhlmu¨ller

A 200 kWth test plant was constructed by BTU Cottbus for the purpose of developing a special variant of coal conversion based on 2nd generation PFBC. This concept, primarily to be used for generating power from lignite, employs a circulating type fluidized bed and is characterized by a design that combines the two air-blown steps “partial gasification” and “residual char combustion” in a single component. The subject of this paper is to develop an overall power plant concept based on this process, and to perform the associated thermodynamic calculations. In addition to the base concept with one large heavy-duty Siemens gas turbine V94.3A fired with Lausitz dried lignite (19% H2O), further versions with variation of Siemens gas turbine model (V94.3A and V64.3A), the water content of the fuel fired (raw lignite with more than 52% H2O or dried lignite) as well as the method of drying the coal were investigated. Common assumptions for all versions were ISO conditions for the ambient air and a condenser pressure of 0.05 bar. As expected, the calculations yielded very attractive net efficiencies of almost 50% (LHV based) for a variant with the small V64.3A gas turbine and up to more than 55% for the large plants with the V94.3A gas turbine. It was further demonstrated that thermodynamic integration of an advanced, innovative coal drying process (e.g. fluidized-bed drying with waste heat utilization) causes an additional gain in net efficiency of about three percentage points compared with the variant of firing lignite that was first dried externally. In addition to the basic function of the coal conversion system, it was necessary to also assume preconditions such as complete carbon conversion, reliable hot gas cleaning facilities and fuel gas properties that are acceptable for combustion in the gas turbine. Put abstract text here.

Author(s):  
B. Becker ◽  
H. H. Finckh ◽  
R. Meyer-Pittroff

In gas-cooled solar power plants the radiant energy of the sun is transferred to the cycle fluid in a cavity type solar receiver and converted into electric energy by means of a combined gas and steam turbine cycle incorporating a waste heat steam generator. The design and optimization of the energy conversion system in accordance with solar-specific considerations are described with particular regard to the gas turbine. In designing the energy conversion system several variants on the combined cycle with waste heat steam generator are investigated and special measures for the improvement of the cycle efficiency, such as the refinement of the steam process through the addition of pressure stages are introduced. It is demonstrated that the solar power plant meets the requirements both for straight solar and constant load operation with fossil fuel substitution. In order to establish the possibilities of attaining high part-load efficiencies in straight solar operation, two modes, variable and constant speed of the gas turbine, are compared with one another.


Author(s):  
Sultan Almodarra ◽  
Abdullah Alabdulkarem

Gas turbine power plants fueled by natural gas are common due to their quick start-up operation and low emissions compared with steam power plants that are directly fired. However, the efficiency of basic gas turbine power plant is considered low. Any improvement in the efficiency would result in fuel savings as well as reduction in CO2 emissions. One way to improve the efficiency is to utilize exhaust gas waste heat. Two waste heat utilization options were considered. The first option was to run a steam power plant (i.e. combined cycle power plant) while the other option was to use a regenerator which reduces the size of the combustion chamber. The regenerator utilizes the waste heat to preheat the compressed air before the combustion chamber. In addition, the efficiency can be improved with compressor intercooling and turbine reheating. In this paper, four gas turbine power plant configurations were investigated and optimized to find the maximum possible efficiency for each configuration. The configurations are (1) basic gas turbine, (2) combined cycle, (3) advanced combined cycle and (4) gas turbine with regenerator, intercooler and reheater. The power plants were modeled in EES software and the basic model was validated against vendor’s data (GE E-class gas turbine Model 7E) with good agreement. Maximum discrepancy was only 3%. The optimization was carried out using conjugate directions method and improvements in the baseline design were as high as 25%. The paper presents the modeling work, baseline designs, optimization and analysis of the optimization results using T-s diagrams. The efficiency of the optimized configurations varied from 49% up 65%.


1982 ◽  
Vol 104 (2) ◽  
pp. 330-340 ◽  
Author(s):  
B. Becker ◽  
H. H. Finckh ◽  
R. Meyer-Pittroff

In gas-cooled solar power plants the radiant energy of the sun is transferred to the cycle fluid in a cavity type solar receiver and converted into electric energy by means of a combined gas and steam turbine cycle incorporating a waste heat steam generator. The design and optimization of the energy conversion system in accordance with solar-specific considerations are described with particular regard to the gas turbine. In designing the energy conversion system several variants on the combined cycle with waste heat steam generator are investigated and special measures for the improvement of the cycle efficiency, such as the refinement of the steam process through the addition of pressure stages are introduced. It is demonstrated that the solar power plant meets the requirements both for straight solar and constant load operation with fossil fuel substitution. In order to establish the possibilities of attaining high part-load efficiencies in straight solar operation, two modes, variable and constant speed of the gas turbine, are compared with one another.


Author(s):  
P. Shukla ◽  
M. Izadi ◽  
P. Marzocca ◽  
D. K. Aidun

The objective of this paper is to evaluate methods to increase the efficiency of a gas turbine power plant. Advanced intercooled gas turbine power plants are quite efficient, efficiency reaching about 47%. The efficiency could be further increased by recovering wasted heat. The system under consideration includes an intercooled gas turbine. The heat is being wasted in the intercooler and a temperature drop happens at the exhaust. For the current system it will be shown that combining the gas cycle with steam cycle and removing the intercooler will increase the efficiency of the combined cycle power plant up to 60%. In combined cycles the efficiency depends greatly on the exhaust temperature of the gas turbine and the higher gas temperature leads to the higher efficiency of the steam cycle. The analysis shows that the latest gas turbines with the intercooler can be employed more efficiently in a combined cycle power application if the intercooler is removed from the system.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Sign in / Sign up

Export Citation Format

Share Document